Gizmos by Category

Sinclair Stuff

Cameras & Optical

Clocks Watches Calcs

Computers & Games

Geiger Counters & Atomic Stuff

Miscellaneous & Oddities

Phones & Comms

Radio & Audio

Tape Recorders & Players

Test & Scientific Instruments

TV & Video

 

Psst...looking for cheap 

nuclear stuff?

Gizmos A - Z

Accoson Sphygmomanometer

Acoustic Coupler

Advance PP5 Stabilised PSU

Aibo ERS-111 Robotic Pet

Aiwa LX-110 Linear Turntable

Aiwa TP-32A Tape Recorder

Alcatel Minitel 1 Videotex

Aldis Folding Slide Viewer

Alpha-Tek Pocket Radio

Airlite 71 Aviation Headset

Aitron Wrist Radio

Aiwa TP-60R Tape Recorder

AKG K290 Surround 'Phones

Amerex Alpha One Spycorder

Amstrad NC100 Notepad

AN/PRC-6 Walkie Talkie

Apple Macintosh SE FDHD

Amstrad CPC 464 Computer

AlphaTantel Prestel

Astatic D-104 Desk Microphone

Atari 2600 Video Game

Atari 600XL Home Computer

Audiotronic LSH 80 'Phones

Avia Electronic Watch

Avid Pneumatic Headphones

AVO Multiminor

AVO Model 8 Multimeter

Bambino Challenger Radio

Bandai Solar LCD Game

Baygen Freeplay Lantern

Bellwood, Bond Spycorder

Benkson 79 Mini Tape Recorder

Betacom BF1 Pianotel Phone

Betacom CP/6 Ferrari Phone

Binatone Digivox Alarm

Binatone Long Ranger 6 CB

Binatone Mk6 Video Game

Binotone Radio Binoculars

Bio Activity Translator

Biri-1 Radiation Monitor

Bowmar LED Digital Watch

Boots CRTV-50 TV,Tape, Radio

Brydex Ever Ready Lighter

BSB Squarial

BT Genie Phone

BT Linesmans Phone 282A

BT Rhapsody Leather Phone

Cambridge Z88 Computer

Candlestick Telephone

Canon Ion RC-260 Camera

Cartex TX-160 Multiband Radio

Casio VL-Tone Keyboard

CD V-700 Geiger Counter

CD V-715 Survey Meter

CDV-717 Survey Meter

CD V-742 Pen Dosimeter

Channel Master 6546

Chinon 722-P Super 8 Cine

Citizen Soundwich Radio Watch

Citizen ST555 Pocket TV

Clairtone Mini Hi Fi Radio

CocaCola Keychain Camera

Coke Bottle AM Radio

Commodore 64 Home PC

Commodore PET 2001-N

Computer Novelty AM/FM Radio

Compact Marine SX-25

Concord F20 Sound Camera

Coomber 2241-7 CD Cassette

Craig 212 Tape Recorder

Craig TR-408 tape recorder

Dansette Richmond Radio

Daiya TV-X Junior  Viewer

Dancing Coke Can

Dawe Transistor Stroboflash

Diamond Rio Media Player

Dictograph Desk Phone

Direct Line Phones x2

Dokorder PR-4K Mini Tape

DP-66M Geiger Counter

Eagle Ti.206 Intercom

Eagle T1-206 Intercom

Eagle International Loudhailer

Electrolysis Cell

Electron 52D Spycorder

Electronicraft Project Kit

Ed 'Stewpot' Stewart Radio

EMS Stammering Oscillator

Ericsson Ericofon Cobra Phone

Etalon Luxor Light Meter

Euromarine Radiofix Mk 5

Exactus Mini Add Calculator

Fairylight Morse Set

FEP Microphone & Earphone

Ferguson FC08 Camcorder

Ferguson FHSC 1 Door Cam

Fi-Cord 101 Tape Recorder

Fi-Cord 202 Tape Recorder

Fidelity HF42 Record Player

Fisher-Price 826 Cassette

Fleetwood Globe AM Radio

Franklin LF-390 Guitar Radio

Gaertner Pioneer Geiger Counter

Garmin GPS III Pilot Satnav

GE 3-5805 AM CB Radio

GE 3-5908 Help CB Radio

GEC Transistomatic

GEC Voltmeter

General Radiological NE 029-02

Giant Light Bulbs

Giant Watch-Shaped  Radio

Gowlland Auriscope

GPO Headset No. 1

GPO Keysender No 5

GPO RAF Microphone No. 3

GPO Telephone Series 300

GPO Telephone Type 746

GPO 12B/1 Test Meter

GPO Trimphone

GPO Ring Microphone No 2

Gramdeck Tape Recorder

Grandstand Video Console

Grundig EN3 Dictation

Grundig Memorette

H&G Crystal Radio

Hacker Radio Hunter RP38A

Hacker Radio Mini Herald

Hanimex Disc Camera

Harvard Batalion Radio

Henica H-138 Radio Lighter

Hero HP-101 Intercom

Hitachi MP-EG-1A Camcorder

Hitachi WH-638 Radio

Hitachi VM-C1 Camcorder

HMV 2210 Tape Recorder

Homer KT-505 Phone Amplifier

Homey HR-408 Recorder

Horstmann Pluslite Task Lamp

Ianero Polaris Spotlight

Ingersoll XK505 TV, Radio

International HP-1000 Radio

Internet Radio S-11

James Bond TV Watch

Jasa AM Wristwatch Radio

Juliette LT-44 Tape Recorder

Jupiter FC60 Radio

JVC GR-C1 Camcorder

JVC GX-N7E Video Camera

JVC HR-C3 VHS-C VCR

JVC HR-3300 VHS VCR

King Folding Binoculars

Kodak Brownie Starflash

Kodak 56X Instamatic

Kodak 100 Instamatic

Kodak Disc 6000

Kodak EK2 'The Handle'

Kodak EK160 Instant Camera

Kodak Pony 135

Kvarts DRSB-01 Dosimeter

Kvarts DRSB-88 Dosimeter

Kvarts DRSB-90 Geiger Count

Kyoto S600 8-Track Player

La Pavoni Espresso Machine

Macarthys Surgical AM Radio

Magnetic Core Memory 4kb

Maplin YU-13 Video Stabilizer

Marlboro Giant  AM Radio

Mattel Intellivision

Maxcom Cordless Phone

McArthur Microscope OU

Memo Call Tape Recorder

Micronta 22-195A Multimeter

Micronta 3001 Metal Detector

Micronta S-100 Signal Injector

Microphax Case II Fiche

Midland 12-204 Tape Rccorder

Mini Com Walkie Talkies

Minolta 10P 16mm Camera

Minolta-16 II Sub Min Camera

Minolta XG-SE 35mm SLR

Minolta Weathermatic-A

Minox B Spy Camera

Mohawk Chief Tape Recorder

Motorola 5000X Bag Phone

Motorola 8500X ‘Brick’

Motorola Micro TAC Classic

MPMan MP-F20 MP3 Player

Music Man Talking Radio

Mystery Microphone

 

Widget Of The Week

Telequipment Servicescope S32A. 1962

It would be a bit misleading to say that fixing vintage electrical and electronic gadgets is easy. Sometimes it is, but mostly it’s not, however, it’s not exactly rocket-science either and anyone with a modicum of DIY skills and some simple tools can have a go. Knowing how to do it well comes with experience, and learning from making lots of mistakes. It also helps to have some basic test instruments. A good multimeter is the absolute minimum and a signal injector/tracer comes in handy for sorting out problems on anything involving audio circuitry, but the gold standard of test instruments is undoubtedly the oscilloscope.

 

It’s a powerful diagnostic tool arguably the tech-medic’s equivalent of an X-Ray machine, able to show what is going on inside an electronic circuit. It does this by converting electrical signals into waveforms, and generally displayed on a cathode ray tube (CRT) screen or one of its modern replacements. In very simple terms the display shows the height or amplitude of a waveform, corresponding to its voltage, against time, and from this it’s possible to work out its frequency. In truth oscilloscopes have always been a bit of a luxury for the average tinkerer; that’s changing – more on that in a moment – but there are plenty of occasions when they’re the only device capable of finding a really tricky fault, especially in radios and so on, and they can be invaluable for taking measurements or making a precise adjustment.

 

This Telequipment Servicescope S32A is the one of a number of scopes I’ve owned and used over the years. It has been living out its retirement in my loft for the past decade or so. It still works, sort of, but it has become a bit cranky and difficult to use and can no longer be relied upon for measurements. In theory it could be fixed but that’s probably never going to happen, at least not by me. Many of the parts are either no longer made or have become very difficult (and expensive) to obtain.

 

It dates from the early sixties, towards the end of the valve era, which is one of the reasons why it would be such a challenging restoration project. In its heyday it definitely would have been worth maintaining. It was an expensive, precision instrument, costing well over £2000 in today’s money and that would have been a fairly typical price for a well-featured model like this one, aimed at the busy TV and radio servicing sector. It helps to know that most major electronic appliances made in the 50s, 60s and well into the 70s, also tended to be quite expensive, and because a lot of them used valves reliability was an issue. When they went wrong, which they did all the time, it was generally cheaper to get them repaired, rather than replaced, and that kept a large army of service engineers, working in high street shops and repair centres, in very lucrative employment. 

 

There’s no need to delve too deeply into the technicalities, suffice it to say the S32A is capable of displaying pretty well all of the waveforms likely to be found in TVs and radios made at around the same time. All those knobs and switches make it look quite daunting but they are helpfully divided into three groups. The first one takes care of adjustments for the display (brightness, focus, horizontal (X-axis) and vertical (Y-axis) position. The second group deals with the voltage of the signals it is measuring, these can be between 0.1 and 500 volts per centimetre, which relates to the 1 x 1cm grid overlaid on the screen and used to make measurements. The third group of controls are concerned with the timebase, which is the circuit responsible for generating the spot of light that creates the display on the screen, and how fast it moves. In the case of the S32A the time it takes for the spot to move 1cm can be adjusted between 10 milliseconds and 1 microsecond. A X1 to X50 range multiplier switch extends the range to accommodate very low and very high frequency signals. The timebase also has a set of trigger controls, which locks onto the signal, to ensure a stable waveform display.   

 

It probably sounds a lot more complicated than it is but I reckon that given a few brief instructions, or even left to their own devices, randomly twiddling knobs, almost anyone can figure out how to get a stable display on the screen, and by counting squares, work out the amplitude and even the frequency of a simple waveform.

 

All of this is fairly standard stuff on a service scope – hence the name – and the only slightly unusual feature on this one is the angled display tube. This is supposed to make it easier to see, as on the bench it’s likely to be below the user’s eye-line. The downside is that it can pick up annoying reflections from wall and ceiling lights.

 

The overall standard of construction is of an incredibly high standard, beautiful even, in its own way, but inside the metal case is no place for the faint-hearted. It’s full of my worst nightmares, lots of valves (9 of them), densely populated, hand-wired circuit boards, a forest of wires, dozens of hard to get at trimmers and presets for setup and calibration and monstrous high voltage capacitors and coils, just itching to zap unwary hands and fingers. Another reason I won’t be messing around with it anytime soon.

 

I have had this S32A for the best part of 30 years. I bought it second hand for £25, as a distress purchase after my previous scope turned up its toes (a real pile of crap that lasted only 5 or so years). It served me well for over 15 years but eventually its technical limitations, declining performance and great weight wore me down and it was consigned to the loft.

 

What Happened To It?

For well over 50 years, until the mid 1980s, the general design of oscilloscopes changed very little. Of course there were developments, transistors replaced valves, they became smaller and lighter but then the digital revolution kicked in. Up until that time scopes, and the devices they were used to test and align were pretty much all-analogue but digital microchips re-wrote the rules. Scopes rapidly evolved to meet the new demands with increased performance and extra capabilities, and new display technologies meant they could be shrunk to pocket size modules. They also stopped being entirely dedicated, stand-alone instruments. PCs could become virtual or part-time oscilloscope using a combination of software and a plug-in interface module. However, one of the most welcome spin-offs from the digital takeover has been the dramatic reduction in cost of owning an oscilloscope; good quality PC systems now cost less than £100 but in my view the most impressive additions to the market is small DIY kits like the DSO 138 – that’s one in the photo above. They sell from around £15.00 or so on ebay, including a simple case, and can be built by almost anyone able to wield a soldering iron in just a few hours (or bought ready-built for around £25.00). It has a 6cm colour LCD; it has many of the features and functions of modern digital scopes costing significantly more and is capable of dealing with almost anything the average vintage electronic gadget has to throw at it.   

 

There are a small number of vintage test instrument collectors but I doubt that the S32A rates very highly, or would attract the sort of prices that could make them attractive to mainstream collectors. Being so large and bulky they’re not especially decorative either, all of which translates into them not being worth a great deal. As a working instrument it would have some value, but given its age and present condition I doubt that it would be much more than £10.00 or so. One day old scopes could become highly prized. Stranger things have happened, so if you want to get in on the action and take a punt there’s a few of them around and they often pop up at boot sales so now could be a very good time to start investing, but as usual, don’t hold your breath…


GIZMO GUIDE

First seen:         1962

Original Price:   £1300

Value Today:     £10 (0217)

Features:           Single trace oscilloscope, 7.5MHz resolution, 0.1 – 500V/cm vertical, 1uS – 10 seconds/cm horizontal, 7cm CRT, auto/manual & internal/external trigger

Power req.                           120 - 240VAC

Dimensions:                         180 x 225 x 410mm

Weight:                                 9.2g

Made (assembled) in:           UK

Hen's Teeth (10 rarest)          6