Dusty Navigation

Home

About

Crystal Radios

Transistor Radios

Mini Tape Recorders

Spycorders

Sinclair TVs

Manuals

Tape Recorder Gallery

A - C    D- M     N - Z

 

Gizmos by Category

Sinclair Stuff

Cameras & Optical

Clocks Watches Calcs

Computers & Games

Geiger Counters & Atomic Stuff

Miscellaneous & Oddities

Phones & Comms

Radio & Audio

Tape Recorders & Players

Test & Scientific Instruments

TV & Video

 

Psst...looking for cheap 

nuclear stuff?

Gizmos A - Z

Accoson Sphygmomanometer

Acoustic Coupler

Advance PP5 Stabilised PSU

Aibo ERS-111 Robotic Pet

Aiwa LX-110 Linear Turntable

Aiwa TP-32A Tape Recorder

Alcatel Minitel 1 Videotex

Aldis Folding Slide Viewer

Alpha-Tek Pocket Radio

Airlite 71 Aviation Headset

Aitron Wrist Radio

Aiwa TP-60R Tape Recorder

AKG K290 Surround 'Phones

Amerex Alpha One Spycorder

Amstrad NC100 Notepad

AN/PRC-6 Walkie Talkie

Apple Macintosh SE FDHD

Amstrad CPC 464 Computer

AlphaTantel Prestel

Astatic D-104 Desk Microphone

Atari 2600 Video Game

Atari 600XL Home Computer

Audiotronic LSH 80 'Phones

Avia Electronic Watch

Avid Pneumatic Headphones

AVO Multiminor

AVO Model 8 Multimeter

Bambino Challenger Radio

Bandai Solar LCD Game

Baygen Freeplay Lantern

Bellwood, Bond Spycorder

Benkson 79 Mini Tape Recorder

Betacom BF1 Pianotel Phone

Betacom CP/6 Ferrari Phone

Binatone Digivox Alarm

Binatone Long Ranger 6 CB

Binatone Mk6 Video Game

Binotone Radio Binoculars

Bio Activity Translator

Biri-1 Radiation Monitor

Bolex Paillard 155 Cine Camera

Bowmar LED Digital Watch

Boots CRTV-50 TV,Tape, Radio

Brydex Ever Ready Lighter

BSB Squarial

BT Genie Phone

BT Linesmans Phone 282A

BT Rhapsody Leather Phone

Cambridge Z88 Computer

Candlestick Telephone

Canon Ion RC-260 Camera

Cartex TX-160 Multiband Radio

Casio VL-Tone Keyboard

CD V-700 Geiger Counter

CD V-715 Survey Meter

CDV-717 Survey Meter

CD V-742 Pen Dosimeter

Central C-7980EN Multimeter

Channel Master 6546

Chinon 722-P Super 8 ciné

Citizen Soundwich Radio Watch

Citizen ST555 Pocket TV

Clairtone Mini Hi Fi Radio

CocaCola Keychain Camera

Coke Bottle AM Radio

Commodore 64 Home PC

Commodore PET 2001-N

Computer Novelty AM/FM Radio

Compact Marine SX-25

Concord F20 Sound Camera

Coomber 2241-7 CD Cassette

Craig 212 Tape Recorder

Craig TR-408 tape recorder

Dansette Richmond Radio

Daiya TV-X Junior  Viewer

Dancing Coke Can

Dawe Transistor Stroboflash

Decca RP 205 Record Player

Decimo Vatman 120D Calc

Diamond Rio Media Player

Dictograph Desk Phone

Direct Line Phones x2

Dokorder PR-4K Mini Tape

DP-66M Geiger Counter

Eagle Ti.206 Intercom

Eagle T1-206 Intercom

Eagle International Loudhailer

Electrolysis Cell

Electron 52D Spycorder

Electronicraft Project Kit

Ed 'Stewpot' Stewart Radio

EMS Stammering Oscillator

Ericsson Ericofon Cobra Phone

Etalon Luxor Light Meter

Euromarine Radiofix Mk 5

Exactus Mini Add Calculator

Fairylight Morse Set

FEP Microphone & Earphone

Ferguson FC08 Camcorder

Ferguson FHSC 1 Door Cam

Fi-Cord 101 Tape Recorder

Fi-Cord 202 Tape Recorder

Fidelity HF42 Record Player

Fisher-Price 826 Cassette

Fleetwood Globe AM Radio

Franklin LF-390 Guitar Radio

Gaertner Pioneer Geiger Counter

Garmin GPS III Pilot Satnav

GE 3-5805 AM CB Radio

GE 3-5908 Help CB Radio

GEC Transistomatic

GEC Voltmeter

General Radiological NE 029-02

Giant Light Bulbs

Giant Watch-Shaped  Radio

Gowlland Auriscope

GPO Headset No. 1

GPO Keysender No 5

GPO RAF Microphone No. 3

GPO Telephone Series 300

GPO Telephone Type 746

GPO 12B/1 Test Meter

GPO Trimphone

GPO Ring Microphone No 2

Gramdeck Tape Recorder

Grandstand Video Console

Grundig EN3 Dictation

Grundig Memorette

H&G Crystal Radio

Hacker Radio Hunter RP38A

Hacker Radio Mini Herald

Hanimex Disc Camera

Harvard Batalion Radio

Heathkit GR-70 Multiband Radio

Henica H-138 Radio Lighter

Hero HP-101 Intercom

Hitachi MP-EG-1A Camcorder

Hitachi WH-638 Radio

Hitachi VM-C1 Camcorder

HMV 2210 Tape Recorder

Homer KT-505 Phone Amplifier

Homey HR-408 Recorder

Horstmann Pluslite Task Lamp

Ianero Polaris Spotlight

Ingersoll XK505 TV, Radio

International HP-1000 Radio

Internet Radio S-11

Ivalek De Luxe Crystal Radio

James Bond TV Watch

Jasa AM Wristwatch Radio

Juliette LT-44 Tape Recorder

Jupiter FC60 Radio

JVC GR-C1 Camcorder

JVC GX-N7E Video Camera

JVC HR-C3 VHS-C VCR

JVC HR-3300 VHS VCR

King Folding Binoculars

Kodak Brownie Starflash

Kodak 56X Instamatic

Kodak 100 Instamatic

Kodak Disc 6000

Kodak EK2 'The Handle'

Kodak EK160 Instant Camera

Kodak Pony 135

Kvarts DRSB-01 Dosimeter

Kvarts DRSB-88 Dosimeter

Kvarts DRSB-90 Geiger Count

Kyoto S600 8-Track Player

La Pavoni Espresso Machine

Macarthys Surgical AM Radio

Magnetic Core Memory 4kb

Maplin YU-13 Video Stabilizer

Marlboro Giant  AM Radio

Mattel Intellivision

Maxcom Cordless Phone

McArthur Microscope OU

Memo Call Tape Recorder

Micronta 22-195A Multimeter

Micronta 3001 Metal Detector

Micronta S-100 Signal Injector

Microphax Case II Fiche

Midland 12-204 Tape Rccorder

Mini Com Walkie Talkies

Minifon Attaché Tape Recorder

Minolta 10P 16mm Camera

Minolta-16 II Sub Min Camera

Minolta XG-SE 35mm SLR

Minolta Weathermatic-A

Minox B Spy Camera

Mohawk Chief Tape Recorder

Motorola 5000X Bag Phone

Motorola 8500X ‘Brick’

Motorola Micro TAC Classic

MPMan MP-F20 MP3 Player

Music Man Talking Radio

Mystery Microphone

Nagra SN Tape Recorder

National Hyper BII Flashgun

National RQ-115 Recorder

National Panapet AM Radio

National Toot-A-Loop Radio

NatWest 24 Hour Cashcard

Nife NC10 Miner's Lamp

Nimslo 3D Camera

NOA FM Wireless Intercom

Nokia 9210 Communicator

Novelty AM Radio Piano

Nuclear Enterprises PDM1

Olympia DG 15 S Recorder

Onkyo PH-747 Headphones

Opax Stereo Microscope

Optikon Binocular Magnifier

Oric Atmos Home PC

Panda & Bear Radios

Panasonic AG-6124 CCTV VCR

Panasonic EB-2601 Cellphone

Panasonic Toot-A-Loop Radio

Panasonic RS-600US

Parrot RSR-423 Recorder

Penguin Phone PG-600

Pentax Asahi Spotmatic SLR

Philatector Watermark Detector

PH Ltd Spinthariscope

Philips CD 150 CD Player

Philips Electronic Kit

Philips EL3302 Cassette

Philips EL3586 Reel to Reel

Philips PM85 Recorder

Philips P3G8T/00 Radio

Philips VLP-700 LaserDisc

Philips SBC RU 098 TV Remote

Phonotrix Model 1 Recorder

Pifco 888.998 Lantern Torch

Pion TC-601 Tape Recorder

PL802/T Semconductor Valve

Plessey PDRM-82 Dosimeter

Polaroid Automatic 104

Polaroid Land Camera 330

Polaroid Supercolor 635CL

Polaroid Swinger II

Polavision Instant Movie

POM Park-O-Meter

Prinz 110 Auto Camera

Prinz Dual 8 ciné Editor

Prinz TCR20 B&W TV

Psion Series 3a PDA

Psion Organiser II XP

Pye 114BQ Portable Radio

Pye TMC 1705 Test Phone

R2D2 Lazerbuilt Novelty Phone

Rabbit Telepoint Phone

Quali-Craft Slimline Intercom

RAC Emergency Telephone

Racal Acoustics AFV Headset

Radofin Triton Calculator

Raytheon Raystar 198 GPS

Realistic TRC 209 CB

ReVox A77 Tape Recorder

Roberts R200 MW/LW Radio

Rolling Ball Clock

Rolls Royce Car Radio

Ronco Record Vacuum

Royal/Royco 410 Recorder

Sanyo G2001 Music Centre

Sanyo MC-1/1A Mini Recorders

Sanyo MR-115 Tape Recorder

Sanyo M35 Micro Pack

Satellite AM/FM Radio

Satvrn TDM-1200 Sat Box

Science Fair 65 Project Kit

Seafarer 5 Echo Sounder

Seafix Radio Direction Finder

Seiko EF302 Voicememo

Seiko James Bond TV Watch

Sekiden SAP50 Gun

Shackman Passport Camera

Sharp CT-660 Talking Clock

Shira WT106 Walkie Talkies

Shira WT-605 Walkie Talkies

Shogun Music Muff

Silma 120M Projector

Simpson 389 Ohmmeter

Sinclair Calculator

Sinclair Black Watch

Sinclair FM Radio Watch

Sinclair FTV1 Pocket TV

Sinclair Micro-6 Radio

Sinclair Micro FM Radio

Sinclair Micromatic Radio

Sinclair Micromatic Kit (Unbuilt)

Sinclair MTV1A Micovision TV

Sinclair MTV1B Microvision TV

Sinclair PDM-35 Multimeter

Sinclair System 2000 Amp

Sinclair Super IC-12

Sinclair X1 Burtton Radio

Sinclair Z-1 Micro AM Radio

Sinclair Z-30 Amplifier

Sinclair ZX81

Smiths ECS Process Timer

Smiths SR/D366 Gauge Tester

Speak & Spell

Sony Betamovie BMC-200

Sony CFS-S30 'Soundy'

Sony DD-8 Data Discman

Sony CM-H333 Phone

Sony CM-R111 Phone

Sony FD-9DB Pocket TV

Sony M-100MC Mic'n Micro

Sony MDR3 Headphones

Sony MVC-FD71 Digicam

Sony TC-50 Recorder

Sony TC-55 Recorder

Sony TR-55 Camcorder

Sony Walkman TPS-L2

Sony Rec Walkman WM-R2

Speedex Hit Spy Camera

Standard Slide Rule

Starlite Pocket Mate Tape

Staticmaster Static Brush

Steepletone MBR7 Radio

Stellaphone ST-456 Recorder

Stuzzi 304B Memocorder

Stylophone

Talkboy Tape Recorder

Taylor Barograph

Tasco SE 600 Microscope

Teacup Novelty AM Radio

Technicolor Portable VCR

Telephone 280 1960

Telequipment Servicescope

Telex MRB 600 Headset

Thunderbirds AM Can Radio

Tinico Tape Recorder

Tokai TR-45 Tape Recorder

Tomy Electronic Soccer

Toshiba HX-10 MSX Computer

Triumph CTV-8000 5-inch TV

TTC C1001 Multimeter

Uher 400 RM Report Monitor

Vanity Fair Electron Blaster

Vextrex Video Game

VideoPlus+ VP-181 Remote

Vidor Battery Radio

View-Master Stereo Viewer

Vivalith 301 Heart Pacemaker

VTC-200 Video Tape Cleaner

Waco Criuser AM Radio

Waco TV Slide Lighter

Wallac Oy RD-5 Geiger Counter

Weller X-8250A Soldering Gun

W E Co Folding Phone

White Display Ammeter

Wittner Taktell Metronome

Wondergram

Yamaha Portasound PC-10

Yashica AF Motor 35mm

Yupiteru MVT-8000 Scanner

Beseler PM2 Color Analyzer, 1985

This imposing box of tricks was once a must-have tool for anyone involved in the dark art (quite literally) of processing colour photographs. The Beseler P2 is a Color (or colour – depending which side of the Atlantic you happen to be on) analyzer (analyser…). It is used to measure the colour and brightness values of a negative, to determine the optimum grade of photographic paper, filter values, exposure times and so on, to get the best quality print. In fact it is an analogue computer – no digital nonsense here – with what amounts to a simple ‘memory bank’, for storing a range of settings..

 

The key component is the small black box on the end of a cable; this contains a highly sensitive light detection device that can be set to only respond to a single colour (yellow, cyan or magenta), or white light, using a set of switchable filters. It is used in a darkroom and the probe is placed on the bed of a photographic enlarger. The film negative to be analysed is projected on to the white area on the top of the probe. Measurements are taken by twiddling the various knobs and recording the values indicated by the knob pointers and readings on the meter. Normally I would go into a bit more detail about how it is used but even after reading through the manual (link below) several times, I am no wiser. What little I used to know about processing photographic film – largely unsuccessful attempts at developing and printing black and white photos many decades ago – didn’t help to make things any clearer. Colour print processing appears to be a very complicated business and life is too short to get up to speed on what is, sadly, a dying art…

 

So how did it end up on dustygizmos? Simple, all those knobs, the big meter and unusually clean condition immediately caught my eye at an antiques fair in Somerset. The £10 price tag persuaded me that it was worth a second look. It was obvious that it had been very well looked after, it even had its original dust cover, but it still seemed too cheap to be true. However, it turned out that neither I, the stallholder and the few others who had spotted it had any real idea of what it was, but he must have sensed my interest, and said I could have it for a fiver, to save him lugging it back home. It was an offer I definitely couldn’t refuse. As I later found out it was even more of a bargain than I first thought. It turns out I had missed the star feature; the Beseler P2 and many other similar instruments of the same vintage is equipped with a high-quality photomultiplier tubes -- the light sensitive component in the probe – and on their own can sell for the thick end of £100.

 

Please skip this next bit if you’re already bored with all this talk of photomultiplier tubes. They have numerous applications and one of them is of particular interest to me. They are the core components in an advanced type of radioactivity detector, called a scintillation probe. The tube is coupled to a special type of crystal that emits a brief, and very dim flash of light in the presence of radioactive particles. The tube’s job is to amplify the flashes many thousands of times so they can be measured. The interesting bit is that unlike common or garden Geiger Muller detectors, which emit a simple pulse when they detect radiation, the flash from a scintillator crystal varies in intensity according to the type of material producing the radioactivity. When the pulses are processed by a device called spectrum analyser it is possible to accurately identify the radioactive isotope(s) involved. This area of nuclear physics sounds a bit nerdy and specialist. In fact it’s actually quite exciting and well within the scope of the average hobbyist. Apart from the probe all you need is a simple electronic power supply, a PC and some free software to analyse and identify the signals coming from the probe. We’ve drifted off-topic, but the point is there is currently a good supply of redundant colour analysers on the market with photomultiplier tubes, often at bargain basement prices.

 

Welcome back and on with the business in hand. As I said earlier this one appeared to be in very good condition and following a wipe over it looked almost as good as new. In retrospect this isn’t too surprising; in the normal course of events they don’t get a lot of use and tend to be well looked after by their naturally careful owners, not that there’s much to wear out. It was £5.00 well spent and as far as I can determine the photomultiplier tube and the rest of the circuitry is in good working order. Exposing the tube to varying levels of light produced large movements on the meter and, as did moving the knobs. Hardly a scientific test I know, but it bodes well for any future experiments involving the photomultiplier tube. Before we move on a quick mention for the ‘memory bank’ function. This is a bit weird but I seem to recall similar contrivances back in the pre-digital days when a lot of people were experimenting with analogue computers. Essentially it’s the group of six potentiometers in the top right hand corner of the front panel, and you may be able to see from the photo that they have a hinged Perspex cover. That’s pretty much all there is to it, the chosen adjustments are stored on the pots, then ‘memorised’ by preventing them from further adjustment by lowering the flap. 

 

What Happened To It?

Now based in Pennsylvania the Charles Beseler Company dates back to 1869 and has been involved in the photography and optics business for the better part of 150 years. It moved into the amateur and professional markets in the early 1950s, producing a very successful range of darkroom enlargers, and became a leading supplier of darkroom equipment to schools and colleges. More recently it has become major player in shrink-wrapping and packaging. 

 

As a matter of interest, although the Beseler P2 was manufactured in the US a label on the back panel says it was made under licence from a UK company called Melico

 

Digital electronics and solid-state image sensors put paid to big old beasts like this. There is still a market for colour analysers but modern versions are smaller than the probe on the P2, much cheaper and a lot more sophisticated. I haven’t been able to find an exact price for this model, but the P2L, a basic variant of the P2, was selling for around £300 in the US in the mid 1980s, so I’m guessing this better specified model sold for between £400 and £500. Today it is practically worthless as a darkroom tool but it does have some value. No doubt there are a few photographic equipment collectors out there who would be pleased to give it house room, though it will be a few years before it achieves vintage status. There’s probably a few die-hards still using analogue kit like this, but for experimenters and hobbyists it’s the photomultiplier tube, high quality analogue meter and the rest of the components, which make it interesting, and well worth the £10 to £30 devices like this can sell for on ebay.


GIZMO GUIDE  (manual)

First seen:                        1985?

Original Price:                  £450

Value Today:                    £20 (1117)

Features:                          Photographic colour analyser, photomultiplier probe with 4 switchable filters/channels, centre-zero moving coil null/filtration/time scale, analogue value program ‘storage bank’, Spot/Integration/Analyse program functions,

Power req.                        240 volts AC

Dimensions:                      278 x 270 x 265 mm

Weight:                             6kg

Made (assembled) in:       USA

Hen's Teeth (10 rarest):     8


Receiving Set Infra Red Binoculars No.1 Mk 1 Cased 6650-99-960-7616,1970

As well as having the longest name of anything featured in dustygizmos to date, I have to report that it is one of only a small handful of gadgets featured so far that does not work. The reasons for that will become apparent shortly.

 

The British Army Receiving Set, Infra-red Binocular, No1 Mk1, Cased 6650-99-960-7616, otherwise known as the ‘Common-User Binoculars’ are not, as you might suppose, vintage night vision goggles. In pitch-dark conditions they would of very little use. In order to see anything through them the scene has to be lit by infra-red (IR) light, which is (or should be) invisible to the naked eye. Inside each of the binocular tubes there is a small device called an image converter, which as the name suggests, converts infra-red light into visible light. Although fully self-contained, relatively light and portable, these helmet-worn goggles were not widely issued to ground troops. The problem was that requirement for a powerful IR light, however, they did prove useful for drivers of tanks, armoured vehicles, troop carriers and so on, which could be fitted with IR floodlights, and in theory allow them to move around safely at night.

 

It’s a clever design that owes much to an earlier monocular IR viewer called the Type K or ‘Tabby’, which was developed for the British army in the 1940s. These Common User Binoculars, which date from the late 1960s, consists of two separate units, coupled together by cables inside a canvas-covered strap. The idea is they clip onto a steel helmet (Mk III or ‘Turtle type); this arrangement balances the weight of the two modules, and does away with the need for any trailing wires. The binocular assembly at the front houses the two converter tubes. They have a magnification factor of x1 (i.e. no magnification) and are mounted on a spring-loaded swing arm, so it can be quickly flipped up out of the way. The rear module is a high voltage power supply running on a single 1.5 volt C cell. This uses a simple one-transistor oscillator driving a transformer and step-up coil to generate around 12,000 volts, which is needed to power the converter tubes.

 

Alas the CV6099/VX8515 tubes are the only components missing from this otherwise complete outfit. Although they are quite rare I have come across several sites selling them on the web, as well as the occasional ebay listing. So far I have resisted the temptation as they have either been horrifically expensive, or the seller has been unable, or refuses, to say if they work or not  (and they still wants too much money for them…). I have not given up, though, and if and when I am able to get my hands on a pair (or even one) I will add a postscript. If I ever do the good news is that they are really easy to fit, only taking a minute or so; simply unscrew each eyepiece, pop in a tube and screw the eyepiece back on.

 

Overall the condition of this outfit is very good and it appears to have had little actual use. In fact the only part that shown any signs of wear is the carry case, which has clearly had a tough life and done its job well. I found it at small antique market in Surrey some time ago and because the missing tubes and tatty-looking case, the seller was only asking only £10 for it. The power unit looked very clean, inside and out, and produced a hopeful sounding whine when a battery (a single 1.5 volt C cell) was fitted. The output peaked at around 11.5kV, close enough to the rated supply to suggest that all was well and it should function with a couple of converter tubes installed.

 

What Happened To It?

Night vision technology goes back a surprisingly long way and experimental systems were being developed in the late 1920s. So-called ‘active’ or Generation 0 equipment, like the bins shown here, which rely on an external source of IR information first appeared in the late 1930s. The Germany army is credited with being the first to put this kind of equipment into service in 1939.

 

British Army Common Use Binoculars appear to have been in use for around 20 years, until well into the 1980s, long after the development of ‘passive’ or Generation 1 night vision devices. These rely on image intensifier tubes to amplify ambient light, from the moon and stars etc., by a factor of 1000x or more. These were first deployed by the Americans during the Vietnam War. The changeover from active to passive systems looks like a no-brainer. However, it seems to have taken rather a long time, given the fact that they must have been a real liability on the battlefield. Apart from anything else the necessary IR illuminator would be clearly visible, and presumably an easy target, for an enemy equipped with similar equipment.

 

Even in good working condition I doubt that a pair of Common Use Binoculars have much practical use these days. They’re virtually unwearable without a suitable tin helmet and laying on a source of IR light could be a problem. Nevertheless, vintage military equipment can be very collectible and good working examples of this model appear on ebay every so often, in some cases selling for several hundred pounds. This one was undoubtedly a lucky find and a real bargain. With a pair of working tubes and some clean up work on the case, it might well achieve a three-figure sum. The only problem is that replacing the tubes at current market prices would virtually wipe out any profit. If you are after one in working order be prepared to pay handsomely for the privilege, or be patient, seek a fixer-upper and factor in the cost of replacement converter tubes.


GIZMO GUIDE

First seen:                         1968?

Original Price:                   £?

Value Today:                     £30 (1017)

Features:                          IR sensitive night vision binoculars, fixed focus x1 magnification, 2 x CV6099 image converter tubes, 1.3kV power supply.

Power req.                         1 x 1.5 volt C cell

Dimensions:                       450 x 140 x 130mm

Weight:                              1.4kg

Made (assembled) in:         UK

Hen's Teeth (10 rarest):       8


C-Scope ProMet II Metal Detector, 1986

You have to be a hardcore glass-half-full optimist to be a metal detectorist. It’s not that you won’t find anything, you almost certainly will, probably within minutes of switching a metal detector on for the first time. The trouble is ninety-nine percent of what you’ll find is likely to be rubbish. On the other hand there’s that magic one percent possibility of unearthing something interesting, and occasionally even valuable, and that’s what makes it such a popular hobby. As it happens there are ways to improve the odds and that’s to invest in some decent kit, spend time learning how to use it, and carefully pick the places where you do your detectoring – and yes, that is a real word…

 

Although this C-Scope ProMet II is more than 30 years old, it is the sort of metal detector that can help limit the number of bottle caps, rusty nails, bits of tin foil and so on you’ll dig up and, with practice, help tell the difference between a gold ring and an aluminium ring-pull. It’s a ‘discriminator’ several steps up from basic detectors and for good measure it can also compensate for differing ground conditions. This can have a big effect on a detector’s sensitivity and performance. For example, a piece of metal buried in a heavy clay soil can give an entirely different reading, or no reading at all, when the same object is at the same depth on a sandy, saltwater-soaked beach.

 

In comparison with most of today’s fancy digital detectors the ProMet II is relatively crude, being mainly analogue in nature. That’s not necessarily a disadvantage; manual controls give the user more flexibility, compared with fancy pre-programmed and automatic functions. There is a downside, though, and that’s all those knobs and buttons, and learning what they do, and the time spent twiddling them to get the best results, or rather, to stop the speaker screaming whilst it is being set up, can be a challenge. It does have a couple of automated functions but when it has been correctly adjusted it is actually very easy to use.

 

Once the telescopic stem for the search head has been extended and tightened the first job is to set the large Ground Exclude switch on the main unit. This has broad settings for Beach (dry sandy or saltwater) or Inland (normal or mineralised). The tricky part concerns balancing the settings on the three smaller knobs. They all interact with one another and getting it just right is as much an art as a science. From left to right they are Ground Exclude fine tune, Tuning and Sensitivity.

 

Tuning is set by holding down the Status/Tune button on the Meter stalk and turning the Tuning knob until the howl from the speaker dies down and the meter comes close to the centre position. If you are in a hurry there’s an Auto option that gets it more or less right, though sensitivity may not be as good as doing it manually. The Sensitivity control is an aid to discriminating between wanted and unwanted metal, and to some extent, the depth at which objects are detectable.

 

The controls on the meter stalk are a little easier to deal with; they’re concerned with automatic adjustment of Ground Exclude and Discrimination and switching the audio between a straightforward tone, and a variable tone that rises and falls in pitch as the search head passes over a metal object. With practice this can also help determine an object’s size, depth and even what it is made of.

 

The meter gives just a relative indication of signal strength. In other words it rises and falls with the tone from the speaker; it looks quite important but in practice it is of limited use. After a while you tend to ignore it and concentrate more on the sound, which can also be piped through a set of headphones – there’s a standard Jack socket on the front of the main unit. Power is supplied by two battery boxes, housed in a compartment accessible from the underside. They’re filled with 12 AA cells, which sounds a lot but they last a good long time and the weight, which is towards the rear of the main unit, helps with the balance.

 

Build quality is generally very good and it appears to be well protected against the elements. The only minor quibble concerns the size and shape. Even with the stem fully collapsed it’s still quite a lump and not something you can easily carry or transport without a car. This ProMet II came from boot sale in Surrey. It was in a fairly grubby state but it looked intact. There was no corrosion in the battery compartment so the £7.50 I ended up paying for it (haggled down from £10) looked like a fair deal, even if it was going to need attention.

 

It turned out to be in good working order and just needed a very thorough clean up. It had definitely seen a lot of service in muddy fields, some of them freshly fertilised, judging by the smell… With a full set of batteries on board it let out a loud howl, which just wouldn’t go away until I managed to track down a copy of the instructions on the C-Scope website. With its help I managed to sort out the controls and kill the noise, which only returns when the search head passes over some metal. Five minutes later, on a test run in my back garden I located the sunken piece of pipe for a long forgotten rotary clothes dryer, a Russian military coat or hat badge – I have no idea where that came from – two rusty bottle caps for Irn Bru (definitely not mine…), and some fragments of cast metal that I suspect is WW II bomb shrapnel. These items produced a very clear response but in the first half hour there were dozens of other less well-defined hits. With time, and a lot of holes in the lawn, I reckon that I could learn to determine if they are worth digging up. All that remains now is to give it a proper field test, as it were.

 

What Happened To It?

C-Scope, based in Ashford in Kent, has been in the metal detector business for more than 40 years and in addition to manufacturing an extensive range of hobbyist products, like the ProMet II - all designed and built in the UK -- they also make specialist instruments for tracing utility pipework and cables, and hand-held 'friskers' for security applications.

 

As far as I am aware metal detector collectors are few and far between, though there is a healthy market in vintage military instruments, such as WWII mine detectors. The earliest consumer models began to appear in the early 1960s. This was largely thanks to the development of the transistor, which made simple metal detectors light and affordable. Those very early examples stand a fairly good chance of eventually becoming collectibles but the value of later models, like this one, lie in them still being useable. ProMet Ils turn up on ebay from time to time and they can fetch anywhere between £30 and £80, depending on condition, so this one was a really good buy. Had there been a fault in the custom-made search head or the electronics it might have been a very different story. A fair number of the parts are no longer made and could be difficult to source, so unless you can see one working, or it's ridiculously cheap, buying one on spec could be a bit of a gamble; being an optimist really does go with the territory...  


GIZMO GUIDE (Manual)

First seen:                        1985-ish

Original Price:                  £50.00?

Value Today:                    £30.00 (0717)

Features:                          Programmed/Manual Ground Exclude (Inland/Beach - saltwater/mineralised) Audio or Meter Discrimination, variable sensitivity, manual/auto tuning, waterproof search head, 3-section telescopic stem, built-in speaker, headphone (std Jack) & charge sockets (3.5mm Jack)

Power req.                       12 x 1.5 volt AA cells

Dimensions:                     Main unit: 450 x 120 x 250mm, Search Head: 205 x 30, Telescopic Stem:  280mm (collapsed), 750mm (fully extended)

Weight:                            2.9kg

Made (assembled) in:      England

Hen's Teeth (10 rarest):    6


GEC C11B2 Electricity Meter, 1983

Technically this GEC C11B2 electricity meter is stolen property though it’s doubtful the rightful owners want it back. They never bothered to recover it, and since they are in South Africa, and the meter now lives in the UK, it is going will cost them a very pretty penny to come and collect it. More on its epic journey later on.

 

At first glance electricity meters like this one appear to be relatively uninteresting. To be brutally honest they don’t get much more exciting on the second and third glances… In part that’s because they are such familiar objects, though older electromechanical models like this one are disappearing fast. They also tend spend their lives in cupboards and out of sight. Even when you do see or think about them, it’s only briefly, and usually with a degree of annoyance when you recall your last electricity bill. Whilst it is true that, on the whole, electricity meters are only marginally more fascinating than drying paint, you might be surprised at watts going on inside (old electrician joke…) and answer the age old question about how the disc spins? 

 

To fully appreciate how clever it is, it helps to have peek inside the box, though if the mention of electrical jiggery-pokery makes you glaze over, feel free to skip the next couple of paragraphs. The GEC C112B is typical of most electromechanical meters and its job is to measure and record electricity consumption over time, in thousands of watts (kilowatts) per hour. Basically it works using just two coils. These generate magnetic fields that indirectly turn the spinning disc, which is connected by gears to a simple mechanical counter. And that’s all there is to it; well the easy bit at least…

 

The first coil is just a couple of turns of really thick cable and this carries the Live mains feed, from the electricity company’s fuse box to the fuse box feeding the light switches and wall sockets in your home. The coil generates a small magnetic field which is proportional to the current flowing through it, and this varies according to the load, or how many appliances you are using. The second coil, which sits on top of the first one is larger and has many thousands of turns of much finer wire. It is wired across the Live and Neutral connections of the incoming supply and this also produces a magnetic field, this time proportional to the voltage of the mains supply. You may be interested to know that both coils consume small amounts of power. It’s around 2 watts apiece but you only get charged for the power used by the current coil, and only when you are consuming electricity, which may or may not bump up your bill, albeit by only a tiny amount. We’re on the home stretch now and the magnetic fields from the two coils are arranged so they are at right angles to one another. This induces eddy currents in the metal disc, which in turn generates its own magnetic field that opposes the fields from the two coils, forcing it to turn. In short, the more electricity you use, the faster the disc spins and the quicker the numbers on the counter (and your bill) racks up.

 

As an aside it’s worth mentioning that some old style meters, like the C112B, can be persuaded to run slower than they should or even backwards, making it appear that the householder is actually generating electricity and the supply company should be paying them! This really does happen. In the early days of solar power the outflow of electricity from the panels back into the grid would cause the meter to go slow or in reverse. It was also found that some types of electronic devices with exotic power supplies could also unwittingly affect the operation of old meters. However, by far the biggest cause of a slow down or reverse rotation was illicit fiddling by the user. This included physically modifying the meter or its connections, placing powerful magnets close to the meter and so-called ‘black boxes’ connected in line with the mains supply. These use electronic circuits to meddle with the phasing of the supply. Needless to say all such techniques are illegal and well known to supply companies and meter manufacturers who, by the mid 1980s were fitting anti-reverse mechanisms and meter readers were trained to be on the lookout for tampering. Nowadays computerised billing flags up suspicious activity and in some cases the evidence is tragically obvious, like the tamperer’s dead body, or an unexplained electrical fire. Times have changed and modern electronic meters are now immune to most common forms of tinkering and interference, but that doesn't stop people trying...

 

The technology used in electromechanical electricity meters dates back more than 100 years and along the way there have been many improvements, culminating in the C112. It was introduced in the mid 1970s, and it -- and later variants -- was widely reckoned to be one of the best designs ever. It’s not difficult to see why it’s been so popular (with supply companies and electricians at any rate). It is designed to work safely and reliably 24/7, for decades if necessary, and the fact that millions of them were made, and by the time they were replaced or retired most of them were still working, says everything you need to know about how well they were made. To be fair there’s not a lot to go wrong but you only have to look at the solid construction and the materials used to appreciate the quality. There are a few adjustments inside the unit, mostly to do with initial calibration, but once it has been installed it would be expected to work continuously with any further attention almost indefinitely or until it is replaced. The transparent case cover is made of a super-tough plastic and fitted with a tamper-evident wire seal. The rear part of the case is made of an equally strong thermo-setting plastic; it provides both insulation and a fair amount of protection against physical abuse from irate consumers.

 

And so to this meter’s back-story. It was kindly donated to dustygizmos by my elder brother Pete, who lives mostly in South Africa. It was left behind following a meter upgrade in his home and since the engineers left it behind, it was destined for the skip. Then he thought of me and ask if I wanted it. I accepted the offer, as I had never opened one up and was mildly curious about what was going on inside. He bought it with him on his most recent annual summer visit to the UK and  I still cannot work out how it got here. This is a large, heavy, unusual, and I would guess, very suspicious-looking deviceyet it managed to pass unhindered through Customs inspections at some of the world’s most notoriously twitchy airports. Maybe old electricity meters are a common sight on baggage X-Ray machine monitors, or perhaps the operatives simply weren’t paying attention? In my experience Customs inspectors have a sixth sense for detecting and confiscating perfectly innocent bottles of water, tiny screwdrivers (for tightening spectacle screws) and small Swiss Army Knives in my luggage… 

 

What Happened To It?

The General Electric Company or GEC was founded in London 1866 by two German-Jewish immigrants Gustav Binswagner and his friend Hugo Hurst. They started out as electrical component suppliers and rapidly moved into manufacturing, opening a small factory in Salford, making switches, electric bells and telephones. Rapid expansion followed and by the beginning of the First World War it had become an important player in the fast growing electrical industry, as well as making numerous products for the military. It was at or around this time that several overseas divisions were set up, including the one in South Africa, where the C11B2 featured here was made. GEC continued to go from strength to strength and throughout the Second World War and the years that followed it opened multiple factories and made huge investments in large scale engineering, nuclear power, defence equipment and acquiring other companies. The company’s fortunes peaked in the mid 1980s triggering a series of mergers and acquisitions. By the late 1990s things started to go downhill. The company drifted into debt and after a long drawn out series of increasingly complicated mergers, sales and joint ventures; in 2006 what remained of the once mighty multi-national was voluntarily liquidated.

 

I am in no doubt that there are some serious collectors of vintage electricity meters out there, and I’m equally certain they pay handsomely for pre WW II models. The trouble with later types, like the C11B2, and others made after ther sixties, is that there are so many of them, and not just in this country. Millions of them must have been made and a fair number of the ones retired from service have been recycled. You can buy fully refurbished ones online for as little as £10, and that is unlikely to change in the foreseeable.

 

That sounds like a rather bleak outlook, but hunting around the web for information I stumbled across a number of oddballs converting old electricity meters – especially round ones -- into ornaments and Steampunk inspired table lamps. You’ll even find instructional videos on YouTube (requiring varying degrees of skill and attention to safety – be warned…). That’s my own humble effort in the photo. It doesn’t make them any more valuable or collectible but it could turn out to be a useful second life for a familiar object that is fast disappearing from our homes. If it continues at the current rate they will vanish entirely within the next decade so this a perfect time to get in on the ground floor. Start acquiring stocks of old meters now and hone your table-lamp building skills for the day – and mark my words, it will come – when they become the height of retro-chic and sell in trendy tat shops for hundreds of pounds. 


GIZMO GUIDE

First seen:            1975

Original Price:      £?

Value Today:        £5.00 (0617)

Features:               Single phase kWh meter, dual coil operation, 6-digit mechanical counter/register, magnetic eddy current brake,

Power req.                     AC mains line powered

Dimensions:                   175 x 136 x 112mm

Weight:                          1.8kg

Made (assembled) in:    South Africa

Hen's Teeth (10 rarest):  4


S.G. Brown Type F Stick Earphone, 1925

Most of the gadgets featured in dustygizmos date from the last half of the twentieth century but every so often something so strange comes along, that an exception has to be made. This particular antique oddity is an S. G. Brown Stick Earphone, made in the early to mid 1920s. It is, quite literally, an earphone on a stick. To be precise it is a Type F earphone, which was more usually found in headphones of the time, for listening to early valve radios and crystal sets.

 

So why is there only one of them, and what’s the stick all about? Quite simply it was designed for ladies, and the partially deaf. The idea was that ladies could listen to a radio without the inconvenience and inelegance of donning headphones, and avoid mussing up their carefully coiffured hair. Stick earphones like this one were also installed in churches, theatres and so on for the benefit of those with hearing difficulties, or seated in the cheap seats. It’s difficult to say which of those applications this one was intended for but the presence of a rotary volume control at the base of the stick suggests that may have been more of a luxury product, for personal use, rather than something used by common folk in public buildings.

 

One thing is certain, though, this one wouldn’t have been used with a crystal radio. The impedance (its internal resistance) is simply too low. Type F earphones were made in a range of impedances, this one measures around 50 ohms, and is designed for use with valve amplifiers, whereas the impedance of crystal radio headphones is much higher, typically between 1000 and 2000 ohms, and since the signal is so weak there would be no need for a volume control.

 

Whatever it’s origins there is no denying that it is very well made. Good quality Bakelite (an early thermo-setting plastic) mouldings are used for the earphone casing, the stick, volume control housing and knob, with chromed and plated metal parts and a surprisingly strong metre-long cotton covered cable, terminated in a two-pin Bakelite plug. Both are original and in excellent condition. Incidentally, the volume control on the end of the stick is compact 50-ohm wire wound potentiometer.

 

There’s not much to say about operation and ease of use, except that it is very light and manoeuvrable, and surprisingly loud, so the volume control is more than a fancy add-on. The earphone is a magnetic type and originally it would have had a ‘Stalloy’ diaphragm. This is the thin metal disc that is mounted very close to the magnet’s poles. Stalloy is the trade name for an alloy of aluminium, iron and silicon, which has the useful property of being attracted to an electro magnet, but not becoming magnetised, so in theory the performance or volume won’t deteriorate. If and when it does the trick was to flip the disc over, which would neutralise any residual magnetism. Diaphragms often got damp and rusty and the one in this stick earphone looks like a compatible replacement. It was manufactured by Richard Thomas and Baldwins and made from a material called Ferrosil, which sounds a lot like an alloy of iron and silicon.  

 

This earphone came from a car boot sale in mid Sussex and at first I thought it was a microphone. So did the stallholder who confidently dated it as an early sixties model and claimed to have tested it, which I found somewhat doubtful. Since he was only asking £5.00 for it, it looked like a worthwhile a punt and he accepted my offer of £3.00 owing to a very small crack in the neck of the stick. This was easily repaired and now you would be hard pressed to spot it without a magnifying glass. Following a thorough clean up it’s as close to mint as its possible to get on something that getting on for a hundred years old. The stallholder was right about its condition, though, and it works really well. 

 

What Happened To It?

Sidney George Brown set up the company bearing his name in 1903. He was an engineer by trade and started out making parts and accessories for early radios, including headphones. The company diversified into scientific instruments and most notably a gyroscopic compass, which gained the company lucrative military contracts. Eventually relations between the S.G. Brown and the Ministry of Defence soured and in the years following the Second World War divisions were sold off and what remained was bought and sold a number of times until the brand eventually disappeared after being acquired by the military contractor Vosper Thorneycroft. 

 

Needless to say the market for stick earphones was quite limited, and short-lived. My guess is it fizzled out by the 1940s, though it’s hard to be sure as this is not a widely researched subject. Ironically a quick search on ebay and Amazon brings up countless modern earphones designed for 'ladies', though they tend to have more to do with girly colours and cute animal shapes, rather than protecting hairdos…

 

What you will often find on ebay, though is one or two vintage stick earphones like this one and at a very rough guess there were at least three or four manufacturers. Prices are disappointingly low and rarely top more than £20, and that’s for ones in good condition. The lack of information on the web suggests stick headphones are an unexplored backwater and therefore ripe for collectors. I would also bet a pound to a penny that one of these would get you a spot on TV if you showed up with one at the Antiques Roadshow, but it won’t make your fortune. As always, though, don’t let that put you off snagging one if the price is right.  


GIZMO GUIDE

First seen:          1925

Original Price:   £?

Value Today:     £15.00 (0617)

Features:           Low impedance magnetic earphone with Stalloy (or Ferosil) diaphragm, variable volume, cloth covered cable, 2-pin connector socket.

Power req.                    n/a

Dimensions:                  325 x 62 x 28mm

Weight:                         200g

Made (assembled) in:    Watford, England

Hen's Teeth (10 rarest)   8


Philips SBC RU 098 Football Zapper, 1998

Every so often you come across a gadget that looks like it was designed by someone who was either high on drugs, or suffering from a serious mental disorder. What other explanation could there be for the Philips SBC RU 098 Football Zapper? It’s like a horrible genetic experiment gone wrong. What depraved mind could have conceived the unnatural mating of a universal TV remote control with a bottle opener?

 

On the other hand… Check out the date, it’s 1998, a World Cup year and my guess is the boffins at Philips were persuaded by the marketing department to come up with a gimmick to cash in on the football competition. Philips would have been promoting their TVs anyway; international events like the World Cup have always seen a big surge in TV sales -- especially high-end models. Booze makers would also be busy peddling their wares, so the Football Zapper was actually a marriage made in heaven. Who wouldn’t want to wind up the volume and celebrate with a beer watching their team score the winning goal (or switch channels and drown their sorrows in the case of England supporters…)? 

 

Little or no new technology was involved in this hybrid design. The remote part is very similar to at least one other model in the Philips range at the time. There really isn’t much to say about bottle openers, except this one is a thick metal plate, sandwiched between the two case halves of the remote. This is imparts strength and leverage. Simply tacking a bottle opener onto the end of a remote box would quickly come to grief.

 

But back to the remote control part. It’s a fairly basic four-function design, able switch the TV on and off, mute the sound, step through the channels and turn the volume up and down. It can control several hundred different makes and models of TV and needless to say it’s factory set for Philips models. To program it for another make it’s necessary to either enter a 5-digit code, or use the Autosearch facility. There’s a list of manufacturers and codes in the back of the instruction manual. All you have to do is hold down the mute and power buttons for 3 seconds, an LED comes on and the code is entered by pressing the control buttons, each of which has been assigned a number from 1 to 7. After the code has been successfully entered the LED blinks twice and it’s set.

 

If it doesn’t work there’s usually a several alternative codes for each manufacturers and there’s the fallback of Autosearch. For this to work the TV has to be switched on. As before the power and mute buttons are pressed for 3 seconds then the power button and it starts stepping though the codes for turning TVs off. As soon as it does you have a second or so to press the power button to stop the search.

 

Philips gave this one to me at the press launch for their World Cup promotional campaign. It wasn’t a tricked up PR freebie but a proper retail product and I seem to recall that it was priced at £30 or thereabouts. I am happy to be corrected but the only thing I can remember is thinking was that it was way too expensive for a fancy bottle opener; World Cup or not… I came across it recently, still in its original packaging, in a box in my loft where it has remained undisturbed for almost two decades, complete with its original batteries. I neither know nor care if it works; it probably does but the TVs it was designed to control have long since disappeared so it is at least 50 percent useless, though the bottle opener is probably still okay…

 

What Happened To It?

Off the top of my head I cannot recall any other novelty or combo remote controls as crazy as this one. It might even be unique which, by rights, should make it quite valuable. Philips probably shifted a few of them but I have never seen another, or can find any record one selling on ebay. Back in the real world I doubt that any sane person or even football fan would pay more than a couple of pounds for it. But its day might come. I’ll be putting it back into secure storage for the benefit of future generations who will either marvel at its ingenuity and originality, or have a good laugh…. 

 


GIZMO GUIDE

First seen:           1998

Original Price:     £30

Value Today:       £2 (0117)

Features:             Universal infrared TV remote control, 4 functions: power, mute volume & channel up/down, and integral bottle opener

Power req.                    2 x 1.5v AAA cells

Dimensions:                  170 x 58 x 40mm

Weight:                         150g

Made (assembled) in:   Singapore

Hen's Teeth (10 rarest): 7


Avid Pneumatic Airline IFE Headphones, 1970

Technically these Avid IFE (In Flight Entertainment) headphones are stolen property. However, since the felony occurred almost 50 years ago I think I am fairly safe admitting to my youthful misdeeds. It wasn’t exactly the crime of the century; back when they were new, in the early 1970s, they would have been worth only a few pence, a pound tops. That’s because they consist of just a few cheap parts: a pair of flexible tubes with a push-fit connector at one end, two soft rubber earpieces and a simple frame to make sure the earpieces stay clamped to the user’s head. There are no moving parts and they operate pneumatically, in other  words they are powered by air. The connector plugs into a socket on the armrest of an airline seat and sound is piped, quite literally, from a pair of small speakers inside the armrest, up to the earpieces. It almost goes without saying that the sound quality was pretty awful and they became incredibly uncomfortable after only an hour or so.

 

Most airlines charged economy and coach passengers a fairly hefty rental fee, £2 - £5 as I recall, for the privilege of using them. Up the front of the plane, in business and first class, they were usually given out free. At the end of the flight they would be collected, cleaned and then reused. It must have been quite profitable for the airlines, though when asked why they cost so much the usual response was that the charge was to cover cleaning and/or royalties for showing in-flight movies. It’s hard to see how they couldn’t have made money. A single rental charge would have more than covered the cost of manufacture, and they were probably re-used scores, if not hundreds of times. What’s more the movies airlines showed in the early days – and there was usually only one, or two on a long-haul flight -- were often well past their view by date...

 

These and most other pneumatic headsets of this type were manufactured by a US company called Avid, who are still in the business of supplying equipment for IFE systems. TWA were the first to use them in 1963 and the development of in-flight entertainment was a clear attempt to boost ticket sales with the added bonus -- for the airlines -- of keeping the cargo, sorry, passengers, occupied and in their seats, especially during long-haul flights. It certainly had nothing to do with advances in technology. Similar systems had been around for decades and this was simply the cheapest and most reliable method of providing in-flight entertainment though terminals in the seats. Systems using conventional wired headphones had been developed but proved uneconomical, not only in terms of the hardware, but also the inevitable losses due to light-fingered passengers. That wasn’t so much of a problem with pneumatic headsets as they were next to useless for anything other than IFE, though a few did go walkabout.   

 

Crafty passengers developed various strategies to avoid paying the charge, including using their own (probably pinched) headsets, though if they belonged to another airline – and you could tell by the colour or styling -- you had to make sure that the cabin crew didn’t spot you. Several companies made acoustic adaptors that plugged into the armrest socket. Inside the small box there was a pair of microphones and an amplifier and this allowed you to hear the movie soundtrack through a pair of conventional headphones. Again discretion was advised to avoid drawing attention to the piratical practice. There was also a bargain basement solution that involved constructing a small conical ‘horn’ from a piece of paper and poking that into one of the holes. If you lifted the armrest and put your ear close to the horn you could just about hear one of the two stereo channels, though only for a few minutes, before serious neck ache kicked in.

 

It all sounds quaintly prehistoric nowadays but apparently this system was still in use by at least one major airline (Delta) up until 2003, but that’s not the end of the story. Pneumatic headsets continue to be used to this day in specialist applications and we will look at a couple of them later on.

 

The maple leaf logo on the support frame indicates that this pair was issued by Canada airlines and it came into my possession during a flight from Toronto in 1970. It was one of several headsets I somehow acquired at around that time. More often than not it was simply a case of finder’s keepers, rather than pre-meditated theft. Sometimes you would find an unclaimed pair in the seat-back pocket or I discovered one that somehow ended up in my pocket, probably during a visit to the loo; it was easily done… This is the only one to have survived many clear-outs over the years; it wasn’t an especially interesting specimen, just overlooked, in the bottom of a box of junk in the garage.

 

What Happened To It?

The type of pneumatic headphones produced by Avid for commercial airlines lasted until well into the nineteen eighties but as aircraft were replaced or refurbished, IFE systems were updated and headphone jacks started appearing on seat armrests. The change was forced upon them by the runaway success of Walkman type personal stereos, which allowed passengers to carry their own entertainment systems with them. Airlines were left with no choice but up their game with more attractive multi-channel IFE offerings, using proper stereo headphones. This didn’t mean they willingly gave up on charging though, and to discourage passengers from using their own headphones, seats were fitted with a variety of proprietary or unusually configured connectors.

 

To be fair the very annoying twin mono 3.5mm jack arrangement had some justification. If there was a problem with the chair module resulting in a loss of signal to one socket, maintenance could be deferred and the seat could still be used. If an aggrieved passenger complained cabin crew could usually persuade, or bribe the traveller with goodies from the refreshment cart to put up with it, or do a swap with someone who didn’t want to use the IFE. It didn’t take long for aircraft jack adaptors to become available, though, so the airlines switched from renting to selling headsets and since they were usually cheap and nasty items, they could still make a decent profit. In the early days at least there were plenty of takers as not everyone remembered to pack a pair of head or earphones for every member of the family in their carry-on. 

 

Now, back to those ongoing uses for pneumatic headphones, and they include hospital MRI scans. Scanners are noisy, intimidating beasts and one way to get patients to relax and stay still is to get them to listen to music. However, metal interferes with the scanner and conventional headphones are banned, but there’s no problem with an all-plastic pneumatic headsets. A similar setup is also used to check the hearing of newborn babies and infants. Pneumatic tubes and earpieces feed sounds to the children’s ears and their responses are monitored using an electroencephalogram (EEG), which measures brain activity. Precision-made plastic parts ensure accuracy and because they are sterile and cheap to make they can be disposed of after use.

 

Over the years millions of pneumatic IFE headsets must have been made but thanks to the rapid change to wired headphone sockets the vast majority of them would have been removed from service and destroyed. Some have survived, though, and there’s usually one or two on ebay at any one time. Prices are surprisingly high for such cheap (and useless) plastic items but that’s probably due to a thriving market in airline ephemera, rather than rarity or interest from collectors of vintage technology. The highest prices -- £15 - £20 -- are paid for unused headsets still in their sealed plastic bags, more so if they belong to large and defunct or small and obscure airline. Less reputable ones like these still have some value, though and because they are in good condition I have valued them at £10.00. I will probably hang on to them though, just in case the airlines ever bring them back. And if they start charging again I’ll be ready, provided they don’t change the design of the sockets...


GIZMO GUIDE

First seen                 1963

Original Price           £?

Value Today             £10 (1216)

Features                   Two channel (stereo) operation, soft rubber earpieces, push-fit connector 

Power req.                     n/a

Dimensions:                   Head frame 180 x 120 x 8mm, tube dia. 6mm, length 1 metre

Weight:                          300g

Made (assembled) in:     USA

Hen's Teeth (10 rarest):   7


Garmin GPS III Pilot Aviation GPS Receiver, 1997

Learning to fly a light aircraft is really not that difficult; learning how to get it safely from A to B without getting lost is the tricky bit. Incidentally, pilots never, ever, admit to being lost they become ‘temporarily uncertain of their position’… Getting the hang of navigation takes a while, or at least it used to. Before GPS navigation was taught using a fiendishly complicated widget called a Whizzywheel or to give it its proper name, a Flight Computer (that's my old one above). It’s a fancy circular slide rule and the idea is you set the compass bearing of the place where you want to go then the altitude and speed you want to fly followed by the wind speed and direction predicted at the height you’ll be flying. With a bit of jiggling and guessimation it shows the compass heading you need to take to compensate for the effects of the wind.

 

On a good day it  could work perfectly, but sometimes it didn’t and you got lost -- sorry, temporarily uncertain etc etc… It used to happen a lot to student pilots, especially on early solo flights. Fortunately most of the time you’d see something on the ground that looked vaguely familiar or if you had time and fuel, you could use the old trick of following a major road, motorway or railway line and, in this country at least, sooner or later you’ll come to a large town, or the coast and from there you should be able to figure out your whereabouts on the map. There is also a last-resort solution and that’s to call a nearby airfield or airport, and with luck they can give you a ‘QDM’ or magnetic compass heading to their location, but that was only for wussies and dire emergencies. Later on in the process you get to play with radio navigation and learn how to use the directional beacons dotted around the country and at airfields. In the end, though most trainee pilots relied a lot on luck, having enough fuel to swan about the skies, and more importantly, being able to see the ground. In theory trainee pilots are not allowed to fly above the clouds or in poor visibility but crap happens, and not knowing exactly where you are, with the fuel gauge hovering on empty, would require a change of underpants, assuming you made a safe landing…

 

Then in the early 90s Global Positioning by Satellite or GPS changed everything. The old methods of navigating the skies didn’t disappear, though. Electronic devices can and do pack up, and getting someone to come and fix your instruments whilst panicking at 10,000 feet in heavy cloud is rather difficult, but these days pretty well all leisure and most commercial pilots rely heavily satellite navigation to get them safely to where they want to go. The Garmin GPS III Pilot was an early portable unit designed for this highly specialised market. Essentially it uses the same technology as earthbound GPS, it even displays some large roads but it is next to useless for finding your way around towns and cities. In fact the moving map display is of secondary importance and only shows large and distinct features that can be seen from the air, because you have to assume that a good deal of the time the ground is completely obscured by clouds.

 

The GPS III Pilot looks a lot like Garmin’s other portable units from that time. It’s housed in an odd wedge shaped case with a stubby antenna on the back. This can be swivelled around, to get the best signal, and removed so you can plug in an external antenna. The unit can be used hand-held but it comes with a dash mount bracket, to keep it safe and in clear view. The monochrome backlit LCD display is quite small but there’s the option of using large text and showing only critical information. It’s powered by four AA cells, though you really wouldn’t want to rely on battery power for flying and it comes with an external power adaptor that that plugs into a standard car cigarette lighter socket (common on many small planes) or powered directly from a light aircraft’s 24 volt DC main bus.

 

In spite of its size the display shows an astonishing amount of information. One button steps through a sequence of six ‘pages' and what follows is just a tiny fraction of the data it can be configured to show. Page one covers GPS acquisition, and you need a good lock on at least three satellites for so-called ‘3D’ navigation, which means showing your position in terms of speed, direction and the height above ground at your destination. Obviously knowing how high you are is quite important when flying, but once you've reached a safe height you just need to know you how high you, and all of the other aircraft in your vicinity, are above the common reference of sea level (so-called QNH). Lower down, when landing or taking off, your height above sea level becomes largely irrelevant and your main concern is your height above the hard, unforgiving ground (QFE), so you can avoid bumping into things…

 

Page two on the display is devoted to positional information. This shows what direction you are going, where you are, how fast you are going and other useful titbits like trip timers (for managing fuel use etc), and sunrise and sunset times, (handy to know if you are not qualified to fly at night). This is followed by the moving map display and it shows only the things that you can see on the ground, and the even more important things you can’t see, like the invisible borders surrounding airfields, aircraft traffic lanes, restricted areas, danger zones and so on. Next comes the HSI (Horizontal situation indicator) page that shows a large compass display with a course deviation bar. The compass shows the direction you need to steer to stay on course; a bar in the middle shows how far you are off track, so you try to keep it centred. There are also readouts for speed, distance and time to waypoint or destination. Page 5 is the only one that looks vaguely like a car GPS and this shows a sort of imaginary aerial highway that you have to follow. Lastly there’s the route page, which shows the ident codes of the airfields or waypoints you have selected and want to get to, the course you need to fly and the distance to each one.

 

One look at the 100 plus page instruction book is enough to tell you that it’s a formidable little gadget and not especially easy to use, compared with an in-car GPS. On the other hand once you have started flight training you quickly become familiar with its most important features and it starts to make sense. Setting it to guide you to an airfield using its ident code, for example, is no more difficult than programming an in-car GPS with a postcode but it is all the other things that it does, besides basic point-to-point navigation, that’s important, and what  separates it from terrestrial GPS.

 

I bought this one in the late 90s, a few years after I got my pilot’s licence and it cost a small fortune, but it was worth every penny and got me out of trouble several times. It was quite a controversial purchase though, and at the time older pilots viewed the new fangled technology with some distrust. However, it quickly proved itself and within a few years GPS had become an almost standard fitment in light aircraft, though more traditional navigation methods definitely haven’t been abandoned and their use continues to be taught for reasons of safety and reliability.

 

What Happened To It?

There are no prizes for working out where the name Garmin came from, once you know that the company was founded in Taiwan in January 1990, by two electrical engineers called Gary Burrell and Dr. Min Kao. Needless to say Garmin, one of the pioneers of GPS technology, are still going strong and heavily involved in all fields of satellite navigation.

 

This particular GPS III Pilot had a lot of use in the late 90s and early noughties and it is still in great condition and full working order thanks to the very high quality of the materials and the standard of construction – after all, lives may depend upon it. At a pinch it could probably still be used, though the tiny screen makes it very hard going, compared with modern units, which have improved in leaps and bounds in terms of displays, accuracy and ease of use. However, the stored maps and database haven’t been updated for several years, if indeed they are still available for this device, so sadly its flying days are now over.

 

Vintage GPS units have yet to achieve collectable status, though there’s little doubt that some of the very first models, sold in the early 90s, are very rare indeed and could eventually have some historic importance to collectors of milestone technologies. It seems that quite a few GPS III Pilot’s were made between 1997 and the early noughties and most of them would have been very well looked after, so they are no strangers to ebay, especially in the US. Current prices for obsolete aviation GPS equipment bears little relationship to the original cost, or follows any particular pattern, which means you can pick up a working GPS III Pilot, for example, for anything between £25 and £200. Of course it is entirely possible that old GPS units could turn out to be a worthwhile investment but it seems unlikely you’ll live long enough to reap the benefits…   


GIZMO GUIDE

First seen                1997

Original Price         £400

Value Today           £40 (1116)

Features                 Single channel differential ready Phase Trac receiver, 58 x 36mm monochrome backlit LCD display with screen rotation and zoom functions, positional accuracy 1 – 5 metres, acquisition times: cold start – 45 seconds; warm start - 15 seconds; auto locate – 5 minutes, update rate 1 second continuous, BNC antenna socket, RS-232 PC data interface 

Power req.                     4 x 1.5v AA cells & 10-32VDC (external adaptor)

Dimensions:                  124 x 42 x 60mm

Weight:                         168g

Made (assembled) in:    Taiwan

Hen's Teeth (10 rarest):  5


La Pavoni Professional Lever Coffee Machine, 1985

As James Bond's gadgets go the La Pavoni Piccola -- seen briefly in his apartment in Live and Let Die (released in 1972) -- has a pretty low profile and most;y goes unnoticed

 

It was only on the screen for a few moments, at the beginning, but it was memorable for this classic, wry, one-liner from Bond’s MI6 boss ‘M’: ‘Is that all it does?’

 

Unusually for a Bond movie he wasn’t using it to save the world or destroy a super-villain’s lair, but to prepare a cup of  cappuccino coffee (very badly, as it happens). However, its presence was more than just a feed line for M’s gag or mere product placement. It clearly signified Bond’s trademark suave sophistication and globetrotting lifestyle. It also helps to know that back in 1972 for most people coffee meant a cup of Nescafe instant. Cappuccinos and espressos were still widely regarded as exotic beverages and drank only rarely, if at all, on foreign holidays, in high-end restaurants or a handful of London coffee bars. The La Pavoni machine was the perfect prop for Bond, a real shiny eyeful and it could only have been made in Italy, where good coffee, style and design have near religious significance.  

 

The apparently simple act of preparing a cup of coffee has spawned more gadgets and contraptions than almost any other culinary task. I’ve probably owned or tried most of them at one time or another, but this one is definitely a keeper. Nowadays it’s possible to get a half decent espresso or cup of coffee from a wide range of appliances but in almost all cases you are limited to a narrow range of options proscribed by the machine’s microchips, control software and flimsy mechanical components. And they’re not helped by the lack of variety in pre-packed capsules and podules and the often characterless ground coffees available in UK shops.

 

La Pavoni lever machines go right back to basics though, they’re purely manual contrivances, no pumps or presets and the resulting cups of coffee can be as good (or as bad) as you care to make them. Some coffee nerds even claim that it’s capable of the perfect espresso, the fabled ‘God Shot’, but the bottom line is that with care, patience, and a lot of trial and error it can make a damn fine tasting brew. The fact that this model has been in production, virtually unchanged, since the early 1960s suggests that the designers got it more or less right first time.

 

There are basically only two critical parts to Bond’s La Pavoni Piccola, and the one featured here, which is the near identical but higher capacity Professional model. They are the boiler, a sealed metal cylinder with an electrical heating element and the Grouphead, which is the doo-dad sticking out of the front with the lever attached. The boiler heats the water close to boiling point, raising the pressure in the cylinder to between 0.8 and 1.2 bar, causing a pressure switch or ‘pressurestat’ to turn off the heating element. At that point the lever is raised slowly, which draws a precisely measured amount of hot water into the grouphead. After a few seconds the lever is pulled down, forcing the water down, under pressure, into the portafilter containing a ‘puck’ of ground coffee, and then into the cup below.

 

It all sounds quite straightforward but the quality of the shot depends on a bewildering number of variables that real coffee nuts spend ages debating, and even longer trying to perfect. These include the speed at which the lever is raised, how long you wait before it is lowered, the pressure applied to the lever, how finely the coffee is ground, the tamp (how hard the portion of ground coffee is pressed into the portafilter), the nature of the water, local height above sea level (yes, really, and we’ll deal with that in a moment) and most importantly, the type or blend of coffee.

 

The height above seal level where the machine is used is important because if it is significantly higher or lower than Milan, where the machine was built, and the pressurestat switch set, it may need to be adjusted to compensate… Don’t mock, small details like that can become a serious issue for La Pavoni’s more obsessive users.    

 

The real highlight, though, is the design, and don’t forget this bizarre looking contraption appeared several decades before Steampunk became a thing. The standout features are the upright shiny chrome boiler, pipework and safety valve; depending how old you are it either looks like it belongs in a mad Victorian scientist’s lab, or a proper old-fashioned Italian coffee bar. Then there’s the pressure gauge; it’s the real deal and actually means something to the user, not like those cosmetic fripperies fitted to many modern coffee machines. The sight glass on the side shows the water level in the boiler and ignore it at your peril! If the level drops too far there is a very real chance it will self-destruct. There’s more eye-candy in the shape of a big knurly knob on the back for the milk steamer and that huge lever on the front, and yes, it is like firing up a small steam engine with all of the whooshing and hissing noises, and as entertaining to use as it looks!

 

I found this La Pavoni Pro at a Surrey car boot sale and even through the layers of mud and grime I could see the chrome plating was sound and it was mostly intact, missing only a drip tray, so it warranted closer inspection. At that point having only a passing knowledge of these machines I had no idea what it was worth or even if it was salvageable, but since the stallholder was only asking £12 for it (haggled down to £8.00), and being a sucker for old coffee machines, I suspected that it could make an interesting restoration project. The stallholder claimed it was working but this turned out only to apply to the boiler’s heating element, everything that could wear out or perish had. As found the only way it could make coffee would be to heat up some water (very messily) for a lukewarm cup of instant.

 

Fortunately the Italians didn’t stint on materials; all of the metal components were in good order and the general build quality on this 1985 vintage model is excellent. La Pavoni are still in business so there’s a good supply of spare parts. The first job was to remove years of accumulated dirt and lime scale; several bottles of strong detergent and descaler later it was starting to look like its old self. The main problem, though, was the many rubber washers and seals inside the Group Head and pipe joints, which all leaked, gushing water and steam whenever the machine was switched on.

 

Rather than try and identify the ones that failed, or were about to go, I purchased a complete rebuild kit, and replacement drip tray costing £30. This forced me to strip the machine down to its bones and do the job properly, thoroughly cleaning every component. It was well worth the effort and after several run-throughs with clean water, to get rid of the last traces of descaler and rubber lubricants, it was ready to go. The first few espressos were very disappointing, though. It wasn’t until I tweaked the pressurestat switch, which determines how hot the water gets, read through several of the many websites packed with advice and techniques for La Pavoni owners, worked my way through half a dozen blends of coffee and bought a new bean grinder that I started to get the hang of it and make drinkable coffee. There’s still plenty of room for improvement, but that’s a big part of the appeal and whilst I doubt I’ll ever get close to a consistent God Shot, it’s fun trying.    

 

Of course there are downsides The La Pavoni Pro is not the machine to have if you just want a quick cup of coffee. It takes a good six to eight minutes for it to get up to temperature and ten minutes plus for a good head of steam. It requires a fair amount of pressure to push down the lever, and if the boiler runs low and you want more coffee you have to depressurise the boiler through the steam wand, refill the boiler and wait for it to heat up again. The steamer pipe is a bit too close to the boiler for comfort and it’s quite fierce. It takes a while to get used to it and until you do it sprays hot milk over an impressively wide area. If you’re used to a conventional coffee machine you’ll find the portafilter latch is back to front, as it were, and all that chrome and pipework takes a lot cleaning to keep it looking nice and shiny.

 

What Happened To It?

The La Pavoni Piccola model featured in Live and Let Die first appeared in 1961. Over the years there have been many improvements but the way it works, and the outward appearance are still clearly recognisable on current Europiccola models, which sell from around £350 for a basic no-frills machine. The Professional model was introduced in 1983, doubling the capacity of the boiler from 0.8 litres, or around 8 espressos, to 1.6 litres, or 16 cups. Otherwise they are practically identical, apart from the price, and today’s baseline Pro model will set you back the thick end of £550. If money is no object you can easily spend half as much again on machines with a brass finish, wooden handles and accessories.

 

The eight quid my one cost was clearly a bargain, even after spending another £30 on the rebuild kit. For the record the washers and seals it uses are not that special and someone who knows their way around the high-pressure rubberware market could probably cut the cost of refurbishment by 50 percent or more. La Pavoni Piccola and Professional machines appear regularly on ebay; they rarely sell for less than £150, though £300 to £500 is more typical but on any used machine you would be well advised to factor in the cost of a grouphead rebuild. Fortunately this is a relatively straightforward DIY job requiring only basic tools. If you are lucky enough to find a cheap vintage fixer-upper don’t be put off; all parts are still available, though it pays to shop around as some items from authorised dealers can be quite pricey. 


GIZMO GUIDE

First seen          1961

Original Price   £?

Value Today     £150.00 (1016)

Features           1.6 litre capacity, 0.7 – 1.2 bar pressure, 1000 watt heating element, pressure gauge, safety valve, steamer wand, water level sight glass

Power req.                     230VAC 50/60Hz

Dimensions:                   300 x 200 x 340mm

Weight:                          6.2kg

Made (assembled) in:     Milan, Italy

Hen's Teeth (10 rarest):  7


Ianero Quartzcolour Polaris Spotlight, 1980

Okay, so we’re a bit off the beaten track with this one, but it is common knowledge that every home needs a good reading lamp, and you’re going to have a hard time finding a better (or bigger) one than this Ianero Quartzcolour Polaris. Believe it or not it didn’t start out as a reading lamp and it required some minor alterations before it could be used as such. Prior to the modification it had the unfortunate effect of burning anything placed within its beam, but now it has been tamed it is a job that it does really well. The only minor problem remaining is to find a house with a living room large enough to fit it in...

 

It’s a stage or studio spotlight and vintage models that have been tarted up are now in demand for trendy interior lighting and really fancy, or really old ones can fetch a very pretty penny. The supply is finite, though and modern repros and fakes, many of them quite nasty and often grossly overpriced, are coming out of the woodwork. In fact movie style lights have always been popular and miniature models have been doing the rounds around for years, but this one is the real deal. It was made in the early 80s by the Italian manufacturer Ianaro and marketed in the UK through theatrical and studio lighting specialists Strand.

 

The reason this one was initially unsuitable as a reading lamp, apart from the size and weight, was the 1000-watt tungsten halogen bulb it uses. Not only does it get extremely hot, the beam of light it produces could probably fry an egg. Of course the powerful lamp can be substituted for an ordinary domestic light bulb but it is not an easy job without replacing the specialised 2-pin holder that is designed to withstand high temperatures. In the end I decided to leave it in its original condition and adapt an ordinary bulb. Now it uses a much more practical and electricity bill and environmentally friendly 3-watt LED light – more about that shortly.

 

Theatrical and studio spotlights turn out to be a good deal more complex than they appear from the outside. The moveable flaps or ‘barndoors’ on the front is the most noticeable, and familiar, feature and their function is pretty obvious, to define the limits of the beam, which as you can imagine can be quite handy for stage lighting. The big lens on the front is a Fresnel type; it works just like a conventional convex lens but it is flat, formed of a series of concentric prisms, which makes it easier to manufacture, and lighter too, because less glass is needed.

 

Most of the really interesting stuff happens on the inside, though, and behind the bulb there’s a fixed concave mirror, made out of polished metal. The beam angle can be varied between 9 and 60 degrees (narrow spot to wide-field) by altering the distance between the bulb and the mirror. The bulb is mounted on a moving platform that slides along a metal rail and this is connected to a control knob (the yellow one on the left side), via cables, driven by a set of pulleys and some gears. It’s an elegant and simple arrangement, and back in 1981 there was an option to control it remotely with a servo motor. There are two other control knobs on the right side (blue and white) and these are connected by a drive cables to mechanical actuators on the mounting bracket, to operate the lamp’s pan and tilt functions. There’s also a manual option; all three knobs have a socket fitting that couples with an attachment on the end of a long pole so adjustments can be carried out when the lamp is mounted out of easy reach. This one is configured for a stand mount, though, and the one it came with is a sturdy and very high quality item made by Arri, famous for its extensive range of video and movie cameras.

 

I came across this lamp, one of a pair, at a car boot sale in Kent, and having seen them previously at antique markets, often priced at several hundred pounds, I almost didn’t bother asking. But I did, more out of curiosity than hope, and was amazed when the stallholder said £60 each. It was still more than I was prepared to spend (or had about my person) so when the stallholder said he was open to offers I tried my luck with a cheeky £30 – about all that I had on me -- and was amazed when he accepted. He added that I could have both for £50. I’m kicking myself now for not snapping them up, though this would have entailed a trip to a cash machine and the nearest one was 5 miles away; the wife was also pulling faces, and it was starting to drizzle. I kid myself that they wouldn’t have fitted in my small car (they would, I would have made them fit…) but onwards and upwards, and it was still the bargain of the year.

 

Judging by the sticky labels it had recently been auctioned as part of a large lot of stage lamps. It was clear that it had been in use for some years but the scuffs and scratches were mostly minor. At some point the clamps on the stand had been painted over with white emulsion but that came off easily and they, and the barndoor flaps, were restored to an almost as-new condition with a quick rub down with some wire wool and coat of matt black spray paint. The lens, lamp housing and stand just needed a thorough clean. Once it was looking presentable and all moving parts lubricated, it was time to see if it worked. A continuity test confirmed the bulb was probably okay and the wiring was in good condition so power was applied and, nothing... The fault turned out to be the heavy-duty toggle switch on the side, which had gone open circuit. I could have replaced it but I decided to try my luck, take it apart and see if it was fixable. It was, just an accumulation of dried out grease and gunk on the contacts and ten minutes later it was back together and working.

 

At close quarters 1000 watts of highly focussed halogen light is a sight to behold (and keep you warm), especially in the confines of the average living room, but sadly the missus instantly banned it from ever being used at full whack, hence the swift changeover to an LED bulb. The modified holder was made using a disc of Bakelite (cut from a mains socket blanking plate), and drilled to take the two connecting prongs, which are a pair of 5mm bolts and solder tags. The connection to the bulb uses two short lengths of rigid 2mm copper wire, bent and soldered between the base of the bulb and the tags. It’s not pretty and probably contravenes numerous regulations but being an LED lamp it is only ever going to get a little warm and it is perfectly safe inside the housing. Nevertheless I am working on a more flexible arrangement, with insulated wiring and a proper bayonet socket, so bulbs can be easily changed.

 

What Happened To It?

Ianero in Italy are still in the business making professional studio and TV lights, so too is Strand Lighting, though it is now part of the Philips group. Nowadays both companies concentrate on sophisticated computer controllable LED-based systems; old style power-hungry and inefficient incandescent lamps like the Polaris have become virtually obsolete

 

That is part of the reason why so many stage and studio lights have been turning up at antique fairs over the past few years, as they are replaced with more up to date equipment, though undoubtedly there have been quite a few theatre and studio closures as well, contributing to the supply. There’s also a lot of phoney stage lights doing the rounds but these tend to be flimsily made, very unconvincing and quite easy to spot, pun intended.

 

Large old-school models like this one are becoming harder to find, though and as when they come on to the market in any sort of quantity they tend to be snapped up by upcyclers and interior designers, who generally sell them on at a very handsome profit. A lot of these lamps were designed for use on overhead gantries and have been clumsily (and sometimes dangerously) mated to unsuitable, lightweight camera, telescope and wooden theodolite tripods, and I dread to think what state the modified electrics might be in. A fair number of lights end up being stripped back to bare metal and polished, which to me looks a bit naff, and they’re going to be a pain to keep looking shiny.

 

Unfortunately bargain finds are few and far between; I doubt that I will ever see another one like this for the price. However, if you fancy one it is worth persevering and there have been some quite decent looking fixer-uppers on ebay recently for well under £100. Antique fairs are another good source but if you’re on a tight budget be prepared to get your hands dirty with some restoration and TLC. Also, given a choice, I recommend models that are quite a lot smaller than this one, unless you have enormous rooms, or live in a converted TV studio.


GIZMO GUIDE

First seen                1980

Original Price         £198

Value Today           £150 (0616)

Features                 1kw Halogen lamp (CP40 bi-post quartz), 150mm Fresnel lens (beam range 9 – 60 degrees), manual pan, tilt & beam focus/control, side mounted power switch, colour/diffuser frame, four leaf 360 degrees rotating Barndoors, inc. Arri Trojan tripod base stand

Power req.                     240VAC

Dimensions:                   550 x 320 x 290mm (ex stand & barndoors)

Weight:                          6kg (ex stand)

Made (assembled) in:    Italy

Hen's Teeth (10 rarest):  6


Weller X-8250A Soldering Gun, 1953

Even those who regularly use soldering irons for work, DIY or in pursuit of a hobby would probably agree that they’re not particularly exciting, but this one really does deserve a special mention. It’s a fairly early Weller model, a classic ‘gun’ type design and tools like this have played a vital role in the development, manufacture and repair of countless electronic and electrical devices for more than half a century, and continue to do so to this day. As a matter of interest Weller’s company history claims that the circuit boards in the very first Apple computer, built in 1984 by Steve’s Jobs and Wozniak, was hand soldered using Weller tools.

 

Soldering guns differs from regular stick or wand type soldering irons in two very particular ways. Firstly they only heat up – to around 200 degrees centigrade -- when you pull the trigger, and for that to be useful it has to happen very quickly, typically in just 3 to 5 seconds. Secondly, they tend to be a lot more powerful than conventional irons, with heat outputs of 100 watts or more (this one is rated at 250 watts). Basically this means that they can solder large things that would quickly cool the tips of an ordinary iron, with wattages of between 15 and 25 watts. This has become less of an issue in the past few decades; nowadays most electronic devices are built using printed circuit boards populated with tiny heat sensitive components; big brutes like this can do more harm than good in confined spaces, but just occasionally there is a need to solder a thick cable or sizeable chunk of metal and only a soldering gun like this, with some serious grunt, will do.

 

Weller soldering guns, named after their inventor, Carl E Weller, from Easton Pennsylvania, began working on the design in his basement in the early 1940s and was granted a patent in 1946. A prototype of his first production gun, the Speedy Model B, is considered important enough to be on display at the Smithsonian Institute. Apart from the fact that the handle is made of wood it looks remarkably similar to this one, made in around 1953, and most of today’s models.

 

Like all the best inventions it’s really simple. The majority of modern soldering irons have a small mains-powered heating element in close contact with the pointed metal ‘tip’. The bent wire tip on Weller guns is the heating element and it heats up almost instantly when a high current, but very low voltage, is passed through it from a chunky ‘step down’ mains transformer. Because most soldering irons may be left on for hours on end the tips and elements can burn out quite quickly. It is wasteful of energy and when they fail they’re rarely worth repairing and have to be thrown away. The tip on Weller guns do eventually wear out or corrode (they’re made of a copper alloy) but replacements are cheap and they’re held in place by two nuts so it only takes a couple of minutes to fit a new one. As an added bonus since they only heat up when needed power consumption is comparatively low. Some models have a dual-action trigger with two heat settings, which makes them even more economical and most Weller guns have a built-in spotlight – this model has two – that illuminates the area around the tip. This is a genuinely useful feature when working in dark and inaccessible spaces, which according to Sod’s Law is where most solder related problems will occur…

 

There are a couple of downsides, though, and the most obvious one is that soldering guns are a bit too big and fierce for use on delicate electronic equipment. The transformer is also quite heavy – this model weighs in at 1.5kg -- so they can be tiring to use for long periods. They are also significantly more expensive to buy than common or garden soldering irons, but you’re paying for the power and one is usually all you will ever need. My first Weller gun lasted for more than 25 years before an unfortunate incident involving gravity and a hard concrete floor. This one is over 50 years old, and providing it stays out of harm’s way there’s every reason to suppose that it will still be going strong in another 50 years. 

 

This Weller X-8250A was a recent find at a Surrey cart boot sale and I wasn’t about to quibble over the 50 pence asking price. The stallholder reckoned that it came from a house clearance and hadn’t been used for a very long time, confirmed by the fact that it was still fitted with an ancient round pin plug. It looked pretty grubby but the Bakelite case appeared to be in very good condition and the tip looked as though it had been little used. Mains powered devices are always a gamble at car boots, and potentially dangerous, so before I connected it up it was given a complete strip down, clean up and electrical check. The Bakelite case and tip holders polished up really well, thanks to some Brasso and a lot of elbow grease. The transformer, switch and cable all tested okay and with a new mains plug fitted it was time to power it up. It worked perfectly, reaching working temperature in just 2 or 3 seconds and since there were no smells, sparks or shocks it should prove to be a perfectly useable and useful tool.

 

What Happened To It?

Weller brand Soldering guns, and a very wide range of specialised tools and devices used in electronics manufacturing are still being produced but the once family-owned company has been a part of the Apex Tool Group since the 1970s. However, the design of the soldering guns has changed comparatively little over the years; plastic has replaced Bakelite making the cases more resilient and improvements in other areas have made them lighter and more efficient but in almost every important respect they're little different from Carl Weller's original design..

 

The X-8250A was originally sold as part of a kit, housed in a tough metal case with accessories that included a reel of solder a small spanner and a set of interchangeable tips for soldering, cutting and melting. Vintage models have become quite collectible, especially in the US, and very early designs and prototypes can fetch quite impressive prices. Complete and well looked after outfits dating from the 50s or 60s regularly sell for between £30 and £50 on ebay US. Well-used 8200 series guns – like this one -- are quite common though, a fair number were sold in the in the UK and the going price for a clean one is around £25.00. I can’t pretend that collecting vintage soldering irons is ever going to become a popular pastime, or a good investment, but if you’re any sort of DIY dabbler or handyperson a Weller gun in good working order is always going to earn its keep and the day will come when it's the only tool for the job. 


GIZMO GUIDE

First seen             1953

Original Price      $14.95

Value Today        £10 (0516)

Features              Trigger switch, 250 watts, 5-second heat up, twin ‘spotlights’, multi-purpose interchangeable tips

Power req.                       240VAC

Dimensions:                     270 x 165 x 55mm

Weight:                            1.5kg

Made (assembled) in:       USA

Hen's Teeth (10 rarest):     5


Horstmann Pluslite Magnifying Task Lamp, 1955?

Many of the items featured in dustygizmos owe their current state of well being to this desk lamp, which has a built-in magnifying lens. It has been sitting on my desk-cum- workbench, quietly earning its keep for the better part of 30 years. For much of that time I have barely given it a thought, until recently, when I acquired an Anglepoise magnifying desk lamp (coming soon). Whilst researching the Anglepoise I came across several references to my old desk lamp, and was surprised to discover that it has become a sought-after item of trendy decor.

 

This particular Horstmann Pluslite was manufactured in England, probably somewhere between the end of the 50s and the early 1960s. The basic design goes back to the 1940s, at least, and is known in the trade as a Task lamp. It was originally intended for a wide variety of commercial, engineering and industrial applications, from map reading to watchmaking, anything in fact that involves working on small things under strong illumination.

 

There are two prominent features: the lamp box and the cantilever mechanism, and we’ll begin with that. As you can see it’s designed to allow the lamp to moved to almost any position (up, down, forward, back), whilst holding the light at a constant angle. It uses a simple cantilever mechanism, similar to the one on the classic Anglepoise, but instead of springs compensating for the weight of the lamp, it has a large and heavy cast iron counterweight, and I mean heavy! The clever part is the way the cylindrical weight rolls back and forth as the lamp is extended, ensuring that the lamp is always perfectly balanced as the centre of gravity shifts. It is ingenious and led to this very distinctive style of lamp being called a ‘roller’. The manufacturer preferred to call it a Counterpoise mechanism, presumably in tribute to Anglepoise.      

 

The lamp housing is made out of thin aluminium sheet, to save weight, and at first glance it doesn’t look particularly interesting, but lift up the hinged flap at the front and there’s a large glass magnifying lens hidden away inside. This folds out and clamps into position, so you can look through it onto the well lit object beneath. The lens has a 2X magnification, which may not sound much but it is exactly right for the sort of close-up work it is designed for. When the lens is folded away it functions happily as a normal, though rather complicated looking desk lamp.

 

All I can remember is that it came from a junk shop in Forest Hill, in South London, around 30 years ago, and I doubt very much that I paid more than £5.00 for it. It was then as you see it now, and apart from a wipe over for the camera; it remains in excellent condition with just a few marks to the silver paintwork here and there. The lamp holder has been rewired – the cable used to be a real trip hazard – and it’s probably on its third or fourth bulb, currently a 5-watt LED type – and that’s about the extent of the care and maintenance it has needed. There’s no reason to think that it won’t still be working in 50 or even100 years time, there’s simply nothing to go wrong.

 

What Happened To It?

Although this lamp is badged Horstmann the manufacturer is usually referred to as Hadrill & Horstmann and the logo on the magnifying glass cover features a double ‘H’. However, there is surprisingly little on the web about the company and its history, apart from the fact that it probably started at some time in the 1930s, and over the years produced at least a dozen different styles and types of table, task and floor standing lights. It seems that Hadrill & Horstmann ceased trading around 50 years ago and the name or business was bought up by the car parts manufacturer Simms in 1956. They went on to develop a series of classy looking desk and task lamps under the Simplus brand throughout the late 50s and 1960s but that’s where the trail goes cold. It’s going to take a lot more research to fill in the considerable gaps, so if anyone knows more (anything…) about the company, please let me know. It may not be a completely dormant brand though. The company name was recently re-registered at Companies House, key patents have been acquired and a graphics design company commissioned to devise a new logo. Could a revival of the iconic lamps be in the pipeline?

 

Time will tell but at the moment original vintage Hadrill and Horstmann lamps are being offered for sale at some frankly astonishing prices. I came across one late 1940s model in what was very kindly described by a dealer in retro-chic furniture as in ‘distressed’ condition (i.e. an absolute wreck) going for over £1000. The few I have seen on ebay are pitched between £200 and £500, and there’s several listed in auction catalogues and on antique dealer’s websites for similar amounts. Even the later Simplus models can fetch a very pretty penny so my one may well be worth a few bob. It is not for sale and still in constant daily use, though at some point I might re-assign it to less arduous decorative duties now that I have my new Anglepoise magnifier lamp, which has a more powerful 5X lens, and is better suited to working on small fiddly things, due to my ageing eyeballs.


GIZMO GUIDE

First seen                1955?

Original Price         £30?

Value Today           £150 - £300 (0516)

Features                  ‘Roller’ type weight counterbalanced (counterpoise) cantilever construction, 105 x 70mm fold-away glass lens 2X magnification, multi-axis lamp mount

Power req.                   220VAC

Dimensions:                 550/1020 x 380 x 160mm (folded/fully extended)

Weight:                         6.5kg

Made (assembled) in:    England

Hen's Teeth (10 rarest):  7


Seafarer 5 Echo Sounder, 1981

You can understand that knowing exactly how far it is between the underside of a boat or ship, and what lies beneath, is quite important to sailors. It’s a good way of avoiding bad things happening, following contact with sharp rocks and other hidden dangers, but until a little over a hundred years ago the only reliable method of determining the depth of a body of water was to drop a weighted, knotted line over the side and count the knots until it hit the bottom.

 

The sinking of the Titanic in 1912 prompted a flurry of research into marine safety. Inventors in both England and Germany came up with similar solutions inspired by the way bats and dolphins use sound to judge distances by a process known as echo location. The first patents for the system we now call Sonar (SOund Navigation And Ranging) were filed in 1913. At first glance it appears to be a fairly straightforward process; sound travels easily through water, at reasonably predictable speeds so all you have to do is to contrive some way to measure how long it takes for a pulse of sound, sent from the bottom of the vessel to bounce back from the seabed, and from that you can  work out the distance.

 

In fact it took several decades for the technique to be refined and become accurate enough to be relied upon but by the Second World War sonar systems had become standard equipment on most naval and commercial vessels. Following the introduction of transistorised electronics in the late 1950 the size and cost of equipment had shrunk to the point where it became an option, and a major improvement in safety for smaller craft and the leisure fishing, sailing and boating markets took to it in a big way, which brings us to the Seafarer 5. This model dates from the early 1980s but essentially it relies on principles established more than half a century earlier, that are still in use today.

 

As you can see the Seafarer 5 is housed in a compact console, which would normally be mounted in clear view of whoever is steering the boat. There’s a minimum of controls, these include a two-position range selector (Shallow 0 – 18metres/0-60 feet and Deep 0-108 metres/0 – 60 fathoms). There’s a variable Gain control, which compensates for multiple echoes, caused by variations in the seabed terrain, depth and so on, and a shallow depth alarm, which sounds when the depth falls below a preset level.

 

However, the most important part of the Seafarer 5, and most other echo locators, is the depth display. Nowadays it’s usually a digital or graphical LCD screen, showing the depth beneath the hull numerically, in feet, metres or fathoms, or as a graphic or ‘chart’ type display showing the seabed contours. In contrast this model features an ingenious electomechanical dial, with a flashing LED indicating the depth against circular calibrated scales.

 

From the outside it looks like the dial is composed of a ring of LEDs but there’s only one. It’s mounted on a short arm, connected to a spinning disc that’s attached to a small motor. Flashing the LED at precisely the right moment as it whizzes around the dial shows depth indications. That’s quite a feat when you think about it and the way it works is really rather clever. On the underside of the disc on which the LED arm is mounted, there are a set of vertical blades, which interrupt a beam of light aimed at an optical sensor. All of the blades are the same size, except one, so the electronics – based around an early programmable microchip called a ULA (Uncommitted Logic Array) -- works out exactly where the LED is on its circular path. The obvious plus points are that only one LED is required, which simplifies the circuitry. The downside is that it involves a number of fragile mechanical parts, and needless to say everything has to be kept bone dry. It is prone to failure, noisy and care needs to be taken not to mount it too close to a magnetic field, like the one coming from a ship’s compass…

 

The unit has two power options, it can either run – for a limited time – on an internal 9 volt PP9 battery, which fits in a compartment on the back of the case, or it can be connected to the boat’s power supply and to accommodate wide variations it, this can be anywhere between 10.8 to 32 volts DC.

 

The other critical component is the transducer. This is a small waterproof module, which fits into a hole in the hull and connects to the Seafarer 5 by a cable. Inside the transducer there is a piezo crystal sounder/microphone that blasts out a 150kHz pulse (100 watts peak to peak), and picks it up on its return journey from the seabed. Sadly this vital part was missing on the one I have here.

 

Operation is very simple, the Gain control doubles up as the on/off switch, initially the LED flashes at the zero indication. The knob is turned slowly until a second reading is shown, indicating the depth.. There’s provision for a second digital repeater display, which would normally be mounted elsewhere on the vessel, in the cabin for example.

 

I landed this one at a local car boot sale. The stallholder’s opening offer price of £10, told me all that I needed to know about its probable condition. Originally it would have cost several hundred pounds and in spite of its age, in good working order I could see it fetching £20 or so in a marine equipment sale, maybe as a fitting for a 1980’s boat restoration project. It didn’t take much persuasion to get him to drop the price to £2.50, which confirmed my suspicion that it probably wasn’t going to be in tip-top working condition...

 

It wasn’t a surprise, therefore to discover that at some point water had got past the case seals but luckily it appears to have been of the fresh, rather than saltwater variety, so the visible damage wasn’t too severe. The case and parts inside all cleaned up well but the worst problem was a thin film of silt on the PCB and oxidisation on the spade contacts that link the PCB to the power and battery connectors on the back panel. This was easy enough to remove but the unit refused to power up. It is unlikely that the lack of a transducer is responsible, so at some point, when time allows it is going to require some serious troubleshooting. Surprisingly, though, what I supposed to be vulnerable components, like the LED display mechanism, slip ring contacts, and the motor escaped unscathed and they all worked when powered independently.  

    

What Happened To It?

According to several 1980s boat and yachting magazines, rotating LED display, like the one used on the Seafarer 5 (and earlier versions, that used neon bulbs) were a mixed blessing. Whilst this type of display is large and very easy to read in all weathers and lighting conditions, reliability can be an issue, but the main complaint was a tendency for them to produce misleading ‘ghost’ indications, caused by multiple echoes. It’s difficult say when they eventually fell out of favour but by the mid to late 1980s unambiguous digital and chart type visual displays had become the norm. 

 

Seafarer Navigation International Ltd, the manufacturers, also had a somewhat chequered history. It started out as a division of the Brocks Group, a collection of companies based in the Poole area, involved in diverse enterprises, ranging from marine electronics to sewing machines. The Seafarer brand was created in 1980 and appeared to thrive for several years but by the early 90s the company had been dissolved and Standard Communications bought up what was left of it, and there the trail goes cold.

 

During its brief existence it is possible that Seafarer made several thousand echo sounders like this one but my guess is that in the extreme conditions they were expected to work in, the failure rate would have been quite high. The new generation of models with digital and graphic displays put paid to mechanical displays by the early 90s, but Seafarer 5s and the later 700 model do turn up on ebay, and every so the seller claims that they are in good working order. Whether or not anyone would trust their lives to one of them is debatable so my guess is they’re of little interest to serious mariners. It’s hard to say who else would want to pay good money for one. The £2.50 I spent was arguably too much, but it was worth it to me, just to see how it worked. Maybe one day, when I get the time, it might be fun to try and get it working, but I doubt it…


GIZMO GUIDE

First seen                1982

Original Price         £800?

Value Today           £5 (0216)

Features                 Depth ranges: Shallow 0 – 18 metres (0 – 60 feet), Deep 4 – 108 metres (0 – 60 fathoms), analogue rotating LED display, presettable shallow water alarm (0,8 -- 30 metres. Piezo transducer (150kHz)

Power req.                    1 x 9v PP9 or external 10.8 – 32v DC

Dimensions:                  225 x 148 x 136mm

Weight:                         1.4kg

Made (assembled) in:    England

Hen's Teeth (10 rarest):  6


EMS Stammering Treatment Oscillator, 1969?

This is now officially the weirdest object in the dustygizmos collection. It’s a Stammering Treatment Oscillator and, according to a tiny logo on the front panel, it was made by a company called EMS, probably during the late 1960s or early 70s. Unfortunately I have been unable to find any evidence that this device ever existed, anywhere. Originally I suggested that EMS stood for Electronic Music Systems, which, if true would mean that it  has a great pedigree. This British company pioneered electronically generated music and early synthesisers, including the legendary VCS3. Sadly EMS folded in 1979 and attempts to contact those involved have proved fruitless, so far, but there have been developments -- see the Update at the end of the item.

 

So what precisely is a Stammering Treatment Oscillator? Some of what follows is conjecture but there are several references to the use of low frequency sounds in the treatment of speech defects. The idea appears to be that carefully selected tones mask the patient’s ability to hear their own voice, which presumably helps in some way to overcome a stammer. However the devices described in the patents I have seen are considerably more sophisticated than this one, usually with multiple oscillators and additional features for automatically varying the frequency and inserting pauses and ‘metronome’ type beats into the audio output.

 

This device has a simple oscillator, amplifier and a headphone output on the front panel – and this, plus the build quality fits in with the renowned EMS being the most likely manufacturer. However, there is some additional circuitry, which is a bit of a mystery. It appears to be configured to generate a high voltage, which is fed to a second front panel socket, marked PB. This resonates with something that the chap who sold it to me said. He had no idea of how it worked but he claimed that the person who be got it from reckoned that it was designed to give the patient a shock, presumably to act as a deterrent, or diversion, to their stammering.

 

It sounds vaguely plausible. Electric shock treatment has, and still is used for a wide variety of complaints and maladies, including pain suppression. True, in times past it had a poor reputation as a dangerous quack remedy but nowadays it is quite respectable and not as barbaric as it sounds. You can even buy a Transcutaneous Electrical Nerve Stimulation or TENS machine in your local high-street pharmacist. These deliver a safe low-current, high-voltage, high frequency shock to the skin. The jury is still out on its efficacy but at the very least it takes user's minds off their aches and pains.

 

But back to the EMS box of tricks and the oscillator part. This is fairly straightforward; it’s a two transistor multivibrator circuit that generates a square wave tone of between 100 to 500Hz – there’s a control on the front panel -- which goes through some simple filtering and wave shaping circuitry. From there it is passes into a two-transistor push-pull amplifier that is connected to a headphone socket on the front panel, and a small built-in speaker mounted on the underside of the case. The purpose of the mystery circuit is a little harder to figure out. It looks a lot like a blocking oscillator, which is basically a transistor, a few other simple parts and the windings of a small step-up transformer, which together generates a high voltage. That theory is backed up by the presence of a neon bulb, inside the case mounted on the back of the circuit board. It cannot be seen from the outside so it’s of no use as an indicator, but it may be acting as a voltage regulator (neon bulbs typically ‘strike’ around 90 volts). If so it would limit the output to a high enough voltage to deliver a very lively tingle, but hopefully not enough to do any permanent damage…

 

This is all highly speculative of course so I would really welcome any experts in this field, or anyone associated with EMS to get in touch and either put me right, or point me in the right direction.

 

Unfortunately at this point it is not possible to say exactly what it does.. It’s as dead as a doornail and some rudimentary circuit checks suggested that at least two of the transistors are kaput. The electrolytic capacitors are also likely to be shot, or leaky, so they will have to be replaced as well. Old transformers and neon bulbs can be quite fragile and not having a circuit diagram is a major headache. It should be possible to reverse-engineer one but that it going to take time. On the plus side major components, like the germanium transistors, helps to date it to somewhere between the late 60s and early 70s. The wire wrap on matrix board construction is fairly easy to deal with when it comes to troubleshooting, and it’s typical of short production run items from that period. It’s also really robust and very well made so there is unlikely to be any serious wiring faults or dry joints. The steel case is built to last and in great condition, in fact the only thing missing is the Ever Ready 126 4.5volt battery packs, which are no longer made but modern (expensive) replacements are still available and it can easily be powered from a bench power supply.

 

I found it at a large open-air antiques fair in the Midlands; it was one of those cold and windy days when prices for oddities like this can be all over the place. The stallholder didn’t seem to be particularly attached to it and we both agreed that his opening price of £10 was a tad optimistic so we settled on a fiver. It was more or less as you see it now. There had been some corrosion around the battery holder but this cleaned up easily. It’s going to take a while to sort out the electronics but it’s definitely worth fixing, if only to discover what it actually does.    

 

What Happened To It?

There were a lot of weird things going on in the sixties and seventies but my guess is that if electric shocks were ever a treatment for stammering, it wasn’t very successful, judging by the lack of references to it in modern journals. Modern speech therapies appear to concentrate on the underlying causes, in conjunction with vocal exercises, breathing techniques and so on, rather than pills and potions, or electric shocks.

 

Devices like this would not have been made in large numbers nor would many of them have them been kept by clinics and practitioners – this might even be the only one. Unfortunately that has little or no impact on what it is worth. I’ve put it at £10, based largely on the value of the case and the working parts inside. It might be more, especially if there’s anyone out there mad enough to collect vintage speech therapy devices, but if there is, they’re staying well hidden…


UPDATE 1 (October 2017)

My thanks to Brian Bottomley, the former Head of Medial Engineering at Calderdale and Huddersfield NHS trust, and clearly someone who knows what he's talking about! He writes to say that the manufacturer of the Stammering Oscillator may be Electro Medical Supplies, now known as EMS Physio. They are a long established business with a track record in electrotherapy products but there is no record of this particular device on their website. Investigations are on-going and as usual, if anyone can help to fill in the gaps, we would be very interested to hear from you.

 

UPDATE II  (Nov 2017)

Electro Medical Supplies have confirmed that they were not the manufacturers. The mystery continues...


GIZMO GUIDE

First seen          1969?

Original Price   £ probably a lot!

Value Today     £10? (0116)

Features           Variable frequency oscillator 100 – 500Hz, high voltage generator, audio amplifier, 8 transistors, built in speaker, headphone output, PB (?) connection, on/off volume control

Power req.                   2 x Ever Ready 126 4.5 volt battery packs

Dimensions:                  224 x 160 x 150mm

Weight:                         2.5kg

Made (assembled) in:    England

Hen's Teeth (10 rarest):  9


BayGen Freeplay Self-Powered Lantern, 1998

Torches tend to be largely uncontroversial things but this one, the BayGen Freeplay Self Powered Lantern, has a number of interesting and unusual stories to tell. These range from playing a part in the battle to stem the Aids epidemic in Africa, to scaring the pants off anyone daring to use one that’s more than a few years old…

 

It all began back in 1991 when multi-talented British stuntman, swimmer and inventor Trevor Baylis saw a TV documentary on the Aids crisis in Africa. It concluded that one effective way to help slow the spread of this terrible disease was education, and one of the best ways to inform people of the dangers in poverty stricken areas was through radio broadcasts. Unfortunately radios depend on a reliable source of power but in the places where Aids had taken hold this was often non-existent so he began developing the now famous wind-up Freeplay radio, using parts from an old transistor radio, toy car and a clockwork music box. After several years of struggle trying to find backers he eventually managed to secure investment and in 1997 he and his partners set up a company to manufacture the Freeplay radio in South Africa. The torch, featured here, appeared the following year, using a similar wind-up clockwork mechanism to the one in the Freeplay radio.

 

It’s a big torch, really big in fact, and heavy too, it weighs in at a not inconsiderable 2kg, and those were just two of the many reasons it wasn’t very successful, at least not in the UK, but there’s no denying that it was a clever and ground breaking idea. It’s more than just a torch, there’s an auxillary output socket so it can be used to power external devices that run on two AA type batteries. It has a DC input socket as well, for charging the battery. The torch comes with a spare bulb, it has a flash mode, which could be useful in emergencies and as an added bonus it runs longer between cranking sessions. Manufacturing the torch in South Africa fitted in with Trevor Baylis’s intention of providing employment and help for people in countries most affected by the Aids epidemic and it also meant that it was made in the area where it was needed and could be most useful.

 

These days most wind-up devices use a hand-cranked dynamo, connected to re-chargeable batteries to generate and store power. The first Freeplay radios and this torch have a clockwork motor, which seems like quite a good idea. There is no need at all for batteries (the radio also has a solar cell); power is stored by winding up a steel spring and it is released slowly, driving a small generator through a pulley and set of gears. The problem is, for it to run long enough to be useful the spring and drive mechanism has to be quite large and heavy. Even so this model can only manage around 3 minutes of fairly feeble light on a single wind, which takes between 30 and 60 seconds, but that’s only part of it. A fully wound spring contains a great of energy, that has to be safely contained. If a wound spring broke loose it could be really dangerous, which means that it has to be safely contained in a heavy-duty housing. Users also need to be sternly warned not to open the case or tinker with the mechanism.

 

Clockwork has other drawbacks, including requiring some means of stopping the spring from unwinding too quickly, and stopping the user getting whacked by the winding handle if they accidentally let go. On the radio this was solved by an electrical load on the generator, or the load of the radio, which acts as a braking mechanism. The downside of this arrangement is that the motor runs down, even when the radio is switched off

 

The torch uses a slightly different method. It has a mechanical brake that keeps the spring wound, so energy is stored when the torch is switched off. In theory this means it should always be instantly ready to use, powered from the wound spring, or the re-chargeable battery. The brake is connected to the on/off function switch, which is a good idea but the design is flawed. If the brake doesn’t engage securely, which can happen as the switch and mechanism ages, there is a very real possibility that after a full or partial wind the spring will release all of its energy in a matter of seconds. If you are lucky and take your hand away quickly enough you may avoid being hit by the whirring handle. It makes a terrible screaming sound, and the temptation is to try and grab the handle while it is spinning, but this will hurt and you will probably end up dropping it. The rapid release of energy almost certainly damages the mechanism and may end up destroying the motor.   

 

This one is an early production sample, sent to me for review in one of the magazines I was working for at the time and it followed hard on the heels of the hugely successful Freeplay wind-up radio. I have one of those too, and it is still in daily use in my bathroom, but the shortcomings of the Freeplay Torch were immediately obvious. As far as I recall rather than write an unfavourable review I put it straight back in the box and it has been in my loft ever since. It is in absolutely mint condition, it still works and the nicad battery even holds a small charge. Unfortunately, though, the braking mechanism can be a little temperamental; if the on/off switch is moved even slightly from the off position the spring starts to rapidly unwind and super fast reactions are needed to stop it inflicting pain… 

 

What Happened To It?

The bottom line is this original Freeplay torch was big and heavy with a weak light that only lasted for a few minutes. It was quite pricey and if the brake failed it would do its best to break your wrist. Sadly for Baylis his patents provided little protection for the wind-up radio and torch concept and within a couple of years they were coming out of the woodwork, the vast majority of them using more efficient, lighter, cheaper and longer lasting direct drive dynamos coupled to rechargeable batteries. Freeplay abandoned clockwork motors in favour of direct drive dynamos after a couple of years and this probably saved the company, which continues to make a wide range of wind-up and solar powered radios, media players, torches and mobile phone chargers.

 

I have yet to see another first generation Freeplay torch on ebay, not that I spend much time looking, but I am reasonably sure there’s not many of them around as apart from anything else they were quite expensive here in the UK. A slightly later Mk 2 clockwork model, called the Sherpa, pops up from time to time on ebay US but they tend to sell for just a few dollars, which suggests that it’s not yet a collectible. To be honest I doubt that it ever will attract much interest, or gain in value, at least not in my lifetime, but it deserves at least a footnote in the history of portable, energy efficient illumination. So, if you ever see one for a silly price, or on its way to the dump, rescue it, but make sure that you check the brake is working before you wind it up!


GIZMO GUIDE

First seen                1998

Original Price         £30.00

Value Today           £10.00 (0116)

Features                 Hand-cranked clockwork generator, folding handle, internal 700mA/h rechargeable battery pack, 2.3-volt 350mA Xenon ultra-bright bulb (plus spare), flash mode, aux power output (3-cols, 350mA DC), mechanical brake

Power req.                        Wind-up generator & 2 x AA nicad rechargeables

Dimensions:                      250 x 170 x 140mm

Weight:                             2kg

Made (assembled) in:       South Africa

Hen's Teeth (10 rarest):     7


Telex MRB 600 Aviation Headset, 1980

This aviation headset may be familiar to several generations of student pilots, and if you are nerdy enough you might even recognise from walk-on parts in several movies, including The Hunt For Red October, made in 1990.

 

The Telex MRB 600 was a popular workhorse headset for the General Aviation (GA) industry for several decades for three very simple reasons, it was cheap, super  tough and it worked really well.

 

For those unfamiliar with this sort of equipment it’s worth running through some of the reasons why the headsets used by aircraft crew are as different as chalk and cheese to the headphones you use to listen to your favourite tunes at home or on the move. To begin with they are fitted with microphones, so pilots can talk to each other, other crew members and, most important of all, air traffic control on the ground. These microphones are deliberately insensitive, to avoid picking up background noise from the engines, and in some light aircraft this can be painfully, and even harmfully loud. Aviation headsets have to provide high levels of noise insulation to protect the user’s hearing, typically encapsulating the wearer’s ears with thick cushioned pads, though nowadays most headsets use more efficient active noise reduction (ANR) technology. Comfort and weight are also hugely important considerations as they are often worn for many hours at a time; taking them off for a rest is not usually an option as apart from the interruption to communications the high noise levels would quickly become intolerable.

 

Because of the importance of reliable communications aviation headsets are regarded as safety-critical items of equipment. They are manufactured and have to conform to extraordinary high standards (The FAA TSO C57  & C58 are the recognised world standards) to ensure reliability, durability and compatibility, using the best components and materials, which inevitably means they can be very expensive. However, the Telex MRB 600s, when they first appeared in the early 80s, were notable for costing less than half as much as comparable headsets, making them popular with student pilots. Telex probably didn’t spend much time on the cosmetics but they definitely didn’t skimp on quality.

 

The microphone is mounted on an extendible lightweight aluminium boom that pivots though 180 degrees, so it can be on either side of the users head, or swivelled up and out of the way when the pilot wants to eat, drink or take a fag break (it was allowed in the olden days…). In normal use it sits within a centimetre or so of the user’s mouth. The design of the headphones might suggest that it’s a stereo setup but they are actually wired for mono sound, mainly because aircraft communication systems are mono, and also as a safety feature, so that if one headphone element or connection fails the other one should still operate. Each ‘phone is surrounded by a thick cushioned pad that envelopes the whole ear, and this is further protected by a cotton cover that provides further insulation and comfort, and it can be easily cleaned or replaced. The adjustable rubber-covered headbands are quite lightly sprung, so it can be worn for extended periods without discomfort. The thick connecting cable is very securely attached, to the frame and almost certainly means that it will survive if someone trips over the cable. The last notable feature is the twin jack plug connections. Whilst they look the same they are, in fact two different sizes. The one for the headphones is a standard 0.25-inch mono audio jack, the other one is very slightly smaller (0.206 inch) and this is for the microphone and its power supply. The reason they are different is simply to avoid mix ups.

 

Aviation headsets tend to be well looked after by their owners and can last for many years. There’s also a healthy market for good second hand models so they don’t turn up at car boot sales very often. When they do many people spot the microphone and mistake them for computer headsets but one look at the unusual twin plugs is enough to put them off, so I was quite pleased to find this one languishing in a pile of manky looking computer parts at a midlands boot sale, with all items priced at £1.00. Apart from the usual coating of grime it seemed to be all there and in well used, but generally good condition. It responded well to cleaning and even the cotton covers scrubbed up well, but the big question is, does it work? In a word, yes, the headphones are actually very good and although they’re optimised for speech frequencies, it makes a decent fist of reproducing music. The mike is a carbon type and requires a bias current to work so it can be a little tricky to test without a handy aircraft comms system. However, with a bit of messing around I was able to check that it was indeed functional and as soon as I get the chance I will try it out properly.

 

What Happened To It?

The Telex Corporation, which began as a hearing aid manufacturer in the 1930s is still with us, and making aviation headsets though it morphed into Telex Communications in the 70s when it was taken over by Memorex and it has since undergone a number of changes, most recently being acquired by the Bosch Group. Unfortunately these changes of ownership have made it difficult to track the progress of the MBR 600 but by trawling aviation industry trade magazines it is clear that it was on sale from at least 1980 to the early 90s, before it was replaced by newer models. However, such was the build quality of this headset that flyers today are buying and selling them for quite healthy sums (£50 - £100) and apparently still being used. For those not involved or familiar with the GA market buying and selling second hand headsets is a risky business and due to the safety aspect, best avoided. Boot sale bargains, although rare are well worth considering as vintage curios, display items, or as a collectible, and if you have soldering skills they’re easily converted into retro-style gaming headsets.


GIZMO GUIDE

First seen                1980?

Original Price         £75

Value Today           £25 (1215)

Features                 2 x magnetic earphones, wired in parallel 150 ohm impedance, adjustable headband, carbon mike on telescopic swivel boom

Power req.                    n/a (powered by aircraft comms panel)

Dimensions:                  230 x 180 x 75mm (boom mic folded)

Weight:                         400g

Made (assembled) in:    USA

Hen's Teeth (10 rarest):  7


Seafix Radio Direction Finder, 1968

Usually it’s not too difficult to work out precisely where you are, in fact in it is virtually impossible to get properly lost on our small, crowded, accurately mapped and signposted island, but it can get a bit tricky when you are at sea and out of sight of land. Within the past three decades highly accurate navigational aids, like GPS, have taken almost all of the guesswork out of determining your location. Before that figuring out your position on the world’s oceans -- with any degree of accuracy -- required a certain amount of knowledge, skill, good charts, a little luck, and a gadget like this Seafix Radio Direction Finder.

 

It’s a simple idea; until a few years ago hundreds of radio beacons were strategically located around the world’s coastlines, beaming a continuous stream of identity letters in Morse Code. To plot your position all you needed was a highly directional receiver, tuned to the frequency of a nearby beacon and by aligning the receiver’s antenna, to the ‘null’ point, where the signal disappeared, you could take a compass bearing then draw a line on your chart to the beacon and be fairly certain that you were somewhere along that line. To pinpoint your position all you needed to do was take one or more bearings from other beacons, and where the lines intersected was pretty much where you were. In practice there was plenty to go wrong, and lots of tweaks and fiddles that had to be applied to plots and readings to compensate for various natural and man-made anomalies. Even experienced navigators could still be a few nauticle miles off course, but it was usually good enough to get vessels to where they wanted to go.

 

This Seafix radio direction finder (RDF), which looks a lot like a Police speed camera, was a fairly basic model and mainly designed for use on smaller vessels that didn’t stray too far from the coast. This also means that it has few controls so it is easy to use, ideal, in fact, for amateur and weekend sailors, in well-charted waters.

 

There are two main components, an accurate liquid-filled compass on the top, with a prismatic pointer, so you can line it up on landmarks and take a readings, The other part is a simple 4-transistor AM receiver that tunes over a frequency range of 200 to 400kHz. This is a portion of the Long Wave band used by non-directional beacons (NDBs), as well as various broadcast stations, including the BBC’s Radio 4 Long Wave service. Long Wave signals have the useful property of travelling very long distances, following – to some extent -- the curvature of the Earth. Higher frequency transmissions on Medium Wave and VHF are generally only receivable within a few tens of miles of the transmitter.

 

The key feature of the Seafix’s receiver is a ferrite rod antenna, which is the directional element. The strongest signal will be received when it is at right angles to the transmitter and it will virtually disappear – the so called ‘null point’ -- when it is pointing directly at (or away from) the beacon. This last point is important because a compass reading taken on a RDF can be 180 degrees out, so it is vitally important that the user takes readings from at least one other beacon and plots them on an up to date navigational chart. To help the user identify beacons a copy of the Morse Code is moulded into the battery cover on the front of the receiver case. Other distinctive features include a removable handle with a lanyard, so the unit can be used handheld, or on some sort of fixed mounting. The receiver case is a square-shaped plastic tube, with weatherproof seals at each end, and the compass is mounted in a sliding holder so it can be removed and inserted the other way around.

 

To use it all you have to do consult your navigation chart and identify the nearest beacon – preferably one within 50 or so miles of your estimated or last known position -- and take a note of its frequency and Morse Code ident. Plug in the supplied headphones, switch it on, set the approximate frequency on the dial, and start hunting. As soon as the beacon has been found the RDF is rotated until the signal disappears, at which point a bearing can be taken on the compass. At night or in poor visibility there’s a built in illuminator lamp that shines up on to the compass.

 

A large car boot sale Dorset, was where I found this one, not too far from Poole, which has a large marina and almost certainly where it came from, when it was last used in anger. The stallholder, clearly not a nautical cove, wanted £5.00 for it, even though it was in a filthy and dilapidated state. He didn’t know where it came from, what it was for or if it worked.  We briefly discussed the matter and agreed on a much more realistic sum of £2.00. After getting it home and cleaning it up – and under the gunk it was in surprisingly good condition -- I found signs that at some point one of the batteries had leaked; luckily it hadn’t corroded the contacts and the dried out deposits brushed away. The only other minor issue was the compass. The damping fluid, probably some sort of light mineral oil, had either been drained or it had leaked. The compass still works but takes ages to settle down. The seals and threaded plug on the underside are intact so it should be easy enough to refill, which I will do one day, when I find out what sort of fluid is used. With a set of batteries installed I was pleased to find that all of the receiver functions worked perfectly, allowing me to both listen to The Archers on Radio 4 and determine that the BBC’s Long Wave transmitter is on a bearing of 310 degrees (magnetic) from my South London location. Sadly there were no working beacons in range so I’ll have to use more traditional methods to figure  out exactly where I am.  

  

What Happened To It?

Unfortunately it is next to useless; nautical RDF was driven into obsolescence by GPS and most NDBs were decommissioned by 2008. A few remain, and it is theoretically possible to use it to triangulate on aircraft beacons but these tend to be inland, so reception is patchy and you probably wouldn’t want to rely on it. The manufacturers, a British company called Electronic Laboratories suffered a similar fate and the company, which appears to have had few other strings to its bow, other than RDF, persevered with several more advanced models in the 80s and 90s, was eventually dissolved in the mid noughties.

 

RDFs like this one have only novelty value and as fairly poor receivers of a handful of Long Wave broadcasts but that doesn’t mean they should be forgotten or discarded. RDF played a vital part in the long history of navigation on the high seas and over the 50 or so years it was in operation it was responsible for helping countless seafarers to safely reach their destination, no doubt saving many lives in the process. It’s also an excellent way to demonstrate the rudiments of radio navigation, though these days, with a GPS and highly accurate maps available on most smartphones, map reading has become something of a lost art. Basic models like this one have yet to become serious collectibles and probably won’t go much up in value anytime soon, but if you see one, and the price is right, grab it. Trust me, their day will come and sooner or later one will pop up on the Antiques Roadshow and prices will surely soar…  


GIZMO GUIDE

First seen                1968

Original Price         £25

Value Today           £10 (1215)

Features                 AM receiver 200 – 400 kHz (navigational & broadcast bands), 4 transistors, ferrite antenna, rotary tuning, variable sensitivity, oil filled compass with sighting prism, switchable illuminator lamp, audio output (3.5mm jack), removable handle & lanyard, Morse code embossed on battery cover

Power req.                           6 x 1.5-volt AA cells

Dimensions:                         180 x 265 x 80mm (mounted handle & compass)

Weight:                                950g

Made (assembled) in:           England

Hen's Teeth (10 rarest):         6


Eagle International Loudhailer, 1970?

Since you ask, because it was there, £1.50, and no, I have no particular need for a loudhailer, megaphone or bullhorn – call it what you will -- at the moment… It is something I have always wanted though, for no very good reason except that they look like a lot of fun to play with. It would have been difficult to justify buying one on a whim, so when I spotted this one at a car boot sale, with an asking price of a fiver I couldn’t resist. A quick thirty-second haggle later and it was mine for the aforementioned bargain price of thirty bob.

 

It’s badged Eagle International, who were quite well known from the 60s to the late 80s for a range of budget-price audio and electronic products. I remember it as one of those cheap and cheerful brands that were good at leaping onto bandwagons, but never managed to produce anything particularly remarkable or innovative. Their stuff was cheap, though, so it was no great loss when it eventually packed up.

 

This loudhailer is an exception. It is very well made though precisely when that was, or its exact model number are all a bit of a mystery as almost all of the labels have disappeared.  My best guess is that it was made in the early to mid 1970s, almost certainly in Japan. That is based largely on the materials (mostly metal) and the components in the amplifier module. Unfortunately there are few clues in the design or styling. On the outside loudhailers haven’t changed much over the years, indeed, many of today’s models look uncannily similar to this one. Collectors of vintage megaphones are probably few and far between but if anyone out there can fill in the gaps, please let me know. 

 

Judging by the design of the amp – a simple push-pull configuration – and the transistors (germanium types) I suspect that it has an output of around 15 watts. It drives an 8-ohm horn speaker and it is powered by eight 1.5-volt C cells, which live in the cylindrical compartment behind the horn. There’s also a socket on the side for an external 12-volt power supply.

 

There are a few noteworthy features, starting with the detachable hand-held microphone. This is an ‘anti-howl’ type, which is supposed to reduce, or eliminate the characteristic high-pitched, howl-round, or acoustic feedback, caused by the mike picking up sounds from the speaker, and feeding it back into the amp, making it oscillate. It involves having two microphone capsules in the hand-held mike, wired together, in opposite phase, across a potentiometer that adjusts input level. Two features are designed to attract an audience’s attention. The first is a built-in siren; the other one is a red light, mounted on the front of the horn speaker. It is easy to use with just a handful of controls. There are two press-to-talk (PTT) switches, on the side of the mike and built into the megaphone’s pistol grip and a three-way slide switch on the side of the unit selects power on/off and siren mode.

 

The lack of interest from other car-booters was understandable. It looked in a very sorry state with the horn and microphone covered in crud and wires hanging out of the mike plug. The clasp that holds the battery cover in place was hanging off and it looked like it had led a hard life, with chipped and scraped paint on the handle and rim of the horn. However, the battery compartment looked clean enough and it takes more than a couple of loose wires and a few scuff marks to put me off… 

 

I wasn’t too surprised that it didn’t work after the cover clamp and plug connections were fixed, though the speaker gave an encouragingly loud pop, which suggested that the amp was probably okay. The first hurdle was figuring out how to take it apart. It turned out to be a bit of a nightmare with lots of hidden screws that could only be reached with an extra long and thin screwdriver, and a torch. When I finally managed to separate the two sections and remove the amplifier module I was confronted by a rat’s nest of wires, several of which had come adrift. Others were hanging by a thread, so the first thing to do was take some photos so there would be a reasonable chance of getting them back to where they belonged when they broke away.

 

Luckily it was fairly obvious where the wayward cables had come from so once it was reassembled it was time to give it another try. It remained stubbornly silent but a few quick prods with a signal injector pointed to the trouble being at the front end, at or around the mike. The problem turned out to be a half-arsed attempt to solder a loose wire on the mike socket and once that was fixed it sprang into life, and it is pretty loud!

 

What Happened To It?

No doubt someone, somewhere, has written a history of the amplified loudhailer (as opposed to entirely passive, shout-though megaphones…) but if it exists I can't find it. My guess is the earliest examples appeared somewhere between 1910 and 1920, coinciding with the development of triode valves, the key components in the first audio amplifiers. Police ‘bullhorns’ regularly appear in gangster movies made in the 30s and 40s but apart from improvements in amplifiers, batteries and materials, from the outside modern ones don’t look significantly different to vintage models. The back-story of Eagle International is also difficult to pin down and whilst the name or brand lives on, the trail of the company responsible for making or marketing this particular model goes cold in 2000.

 

I am under no illusion that loudhailers from the last 40 or 50 years are of little no interest to anyone but me, and possibly a handful of like-minded technology nerds, but really old ones – pre 1950s say – almost certainly are worth something. If nothing else they appear to be extremely rare and occasional searches on ebay for ancient valve-based units have proved largely fruitless. The £1.50 I paid for this one was a very good deal, but the car boot stallholder’s original asking price of £5.00 probably wasn’t too far off the mark. It is still useable but I wouldn’t be confident using it for making important announcements. If you want one for its intended purpose then you would be better off splashing out £20 - £30 on a modern example, which I suspect would also be lighter, louder and more reliable. On the other hand it wouldn’t have a fraction of the character of a vintage model like this one, and who knows what momentous or historic voices and words came out of that horn?         


GIZMO GUIDE

First seen                1970?

Original Price         £30?

Value Today           £10 (1115)

Features                 4 transistor amplifier approx 15 Watts RMS, 8-ohm horn speaker, siren, attention light, detachable anti-howl microphone, external power socket, carry/shoulder strap

Power req.                     6 x 1.5-volt ‘C’ cells, 12VDC external

Dimensions:                   400 x 220mm

Weight:                          2kg

Made (assembled) in:    Japan

Hen's Teeth (10 rarest):  5


Pifco 888.998 Lantern & Spotlight, 1965

It may not be the most high-tech product on these pages but take it from me: back in the 1960s this Pifco safety lantern was at the cutting-edge of multi-purpose portable illumination technology, and a real must-have for boys, of all ages. 

 

Check out the snazzy features; it has a pivoting spotlight, producing a ‘brilliant beam’ according to the box it came in, and on the top there’s a dome lamp that flashes; it even comes with a choice of clear and red coloured domes (the latter is sadly missing on this example). It’s a multi-mode design with a sliding switch on the back that selects spotlight only, flashing dome, or both together, and the carry handle rotates through a full 360 degrees. Who wouldn’t want one? It was just the job for motorists, campers and power cuts, which were a fairly common event in those days.

 

This one is made by Pifco, it has no name or model number but it is stamped ‘UK Design No. 888.998’ and ‘Empire Made’ (Hong Kong) and identical to the one that I proudly owned back in the day. I had forgotten all about it but by chance I stumbled across a couple of pages of them selling on ebay for frankly stupid money, touted as ‘retro chic’ lanterns for trendy glampers and caravanners…

 

To be fair it is an eye catching design, very much of its time, and apart from the dome and front lens, it is all metal construction, which made it as tough as old boots. Sadly, these days the ‘brilliant beam’ looks a bit yellow and feeble, compared with even the cheapest of today’s LED torches, and it’s quite a lump too, to accommodate that enormous 6 volt battery pack, which, incidentally only lasts for a couple of hours. Nevertheless, it does the job it was designed to do superbly well (everyone ate lots of carrots in the sixties, we all had better eyesight and we didn’t need bright torches...), and with prices going the way they are, it’s well on its way to becoming a collectable.

 

Whilst prices on ebay are on the way up it is still possible to find fairly decent examples, like this one, at car boot sales and flea markets. At the Surrey car boot where this came from I didn’t have the nerve to haggle with the stallholder over the 50 pence asking price. He reckoned it worked but apologised and said he couldn’t test it because the batteries were no longer made. By pure coincidence I spotted a stall a couple of rows away that were selling the 6 volt 4R25 battery it uses for just £1.50, and I have subsequently seen them in several high street stores, like Wilkinson and Robert Dyas for well under a fiver.

 

The condition was pretty good, just a few scratches, one or two specks of light surface rust and the chrome plating was bit tarnished in places but it was nothing a quick rub-down with some Brasso couldn’t fix. As you can see it scrubbed up well and everything works just fine, even the flashing dome. By the way, this is a particularly clever feature as the flasher is built into the MES (Miniature Edison Screw) torch bulb. If you look closely at the photo you may just be able to see a tiny bi-metallic strip, connected to one of the two conductive supports for the filament. When the bulb is on it quickly heats up and this causes the bi-metal strip to bend slightly, breaking the circuit. The bulb then cools down, the bi-metal strip returns to its former shape, the contact is re-made, the bulb comes on again and the cycle repeats, flashing the bulb every 2-3 seconds. I will only be using this one on special occasions though, birthdays and holidays and so on, as these specialist bulbs, whilst still available, probably won’t be around for very much longer.   

 

What Happened To It

Pifco or the Provincial Incandescent Fittings Company was founded in Manchester back in 1900 and it is still going strong today, distributing all sorts of useful household bits and bobs from around the world, though the current line-up doesn’t seem to include any torches. It is difficult to be precise about the chronology of this design but it was definitely around in the early to mid 1960s, and I’m sure I recall seeing this self-same model on sale well into the seventies. The shape evolved over the years, though, and from what I have seen later models have flat topped ‘domes’, a slightly larger spotlight and the wire handle morphed into a handy stand, so the whole lamp could be tilted, but essentially it was the same tried and tested design.

 

Chunky metal lanterns like the 888.998 couldn’t last, though. They must have been expensive to make; plastic was a whole lot cheaper and manufacturers could be much more adventurous with their designs, yet under the skin torches and lanterns remained virtually unchanged until the mid to late eighties. At around that time lantern technology took a big leap forward following improvements in rechargeable NiCad and sealed lead-acid batteries and the introduction of low voltage halogen bulbs. This resulted in a rash of bulky but very powerful hand-held flashlights – mostly coloured yellow for some reason -- with claims of millions of candlepower light outputs. The really big change, though, came with the introduction of high-brightness white LEDs and by the late 90s they were becoming cheap enough to use in everyday torches. LEDs are much more robust than traditional incandescant torch bulbs, they last almost indefinitely and use significantly less power for a given light output, but initially the only way to create a respectably bright beam was to use multiple LEDs. By the mid noughties single high-power LEDs started to appear and have subsequently fallen in price to the point where they are now the bulb of choice for almost all serious torches and lanterns.

 

This is excellent news for collectors of vintage torches and lanterns, and if this isn’t yet a popular hobby it probably will be soon, judging by the prices being asked for old lanterns like the 888.988 on ebay. Even manky ones seem to be going for upwards of £15 to £20, so get in quick, while they can still be found for a few bob at your local car boot. Who knows, a complete set of  boxed Pifco lanterns from the sixties and seventies could one day provide a welcome boost for your retirement fund…


GIZMO GUIDE

First seen               1965

Original Price         £5?

Value Today           £15 (1015)

Features                 Hinged spotlight (5.5-volt, 2.5 watt PR13.5S bulb) with polished steel reflector, flashing light (MES type flashing bulb) with clear and red coloured domes, slide switch for three-mode operation (spotlight, dome & both together), adjustable carry handle

Power req.                    6-volt 4R25/PJ996 lantern battery

Dimensions:                  170 x 90mm (195 x 145mm inc. spotlight & handle)

Weight:                         400g

Made (assembled) in:    Empire Made (Hong Kong)

Hen's Teeth (10 rarest):  6


Micronta 3001 Metal Detector, 1979

‘Get that bloody thing out of here…’. That’s a sanitised summary of what the policeman behind the desk at North Chingford’s cop-shop said to me when I proudly presented him with a mostly intact WW2 incendiary bomb. I suspect what might have concerned him was the white substance oozing from the corroded casing. The last time I saw it, it was sitting in a bucket in the middle of the deserted police station car park.

 

This was one of the first and certainly the most interesting things I ever found with my home-built metal detector, (from plans in ETI magazine), back in the late 1970s. I had been waving it around my back garden and nearby fields and forest for several hours and apart from the small bomb (which came from the forest) all I ever managed to find was lots of ring-pulls, aluminium foil from fag packets and a washer or two. In short it was huge disappointment and my hopes of discovering buried treasure quickly fizzled out.

 

Perhaps, if I had owned one of these, a Micronta 3001, which was sold in Tandy stores at around the same time, I might have persevered. Within a few minutes of getting this one home from the boot sale I managed to find three old toy cars, numerous nuts, bolts and bits of rusty metal, two tops from fish paste jars, 3 old pennies and a sixpence; it was already paying for itself…

 

In the scheme of things the Micronta 3001 is only one step up from a toy metal detector, and nowhere near as sensitive as today’s ‘pro’ detectors but it really does work and it can find smallish metal objects like coins at a depth of a centimetre or two. It also has a rudimentary discriminator facility and supposedly can tell the difference between ferrous and non-ferrous metals, though to date gold and silver objects have proved elusive.

 

The key component is the 180mm (7-inch) diameter search coil, mounted on a hinged joint at the end of a telescopic pole. The other end is attached to the hand-held module – more on that in a moment. There are actually two coils, one sends out a low power radio frequency signal, which is picked up by the second coil. Under normal circumstances the transmitted and received signals are the same but if the coil passes over a metallic object the electromagnetic field is disturbed and this change is used to generate a tone. The tone rises and falls in pitch and volume according to the size and proximity of the object. Controls on the hand-held unit alters the frequency and threshold, or point at which the tone is generated allowing the user to fine-tune sensitivity and discriminate between ferrous and non-ferrous metals. The strength of the signal is also displayed on a simple meter and there’s the option to plug in a set of headphones, for a spot of discrete detecting. Inside the case there’s a remarkably simple circuit board, just 4 transistors plus a handful of passive components. It is powered by six AA cells, which live in a compartment on the underside of the hand-held unit. For the record markings on the PCB show that a Chinese company called Alert manufactured it and further research indicates they were responsible for several other metal detectors in the Radio Shack range.

 

It only takes a few minutes to get the hang of using it and by changing the speed and direction of the sweeping motion it’s easy to pinpoint and gauge the size of a buried object. Very small objects can be found by digging out chunks of soil at a time, depositing them to one side and re-testing each one in turn.

 

This 3001 came from a Surrey car boot sale. The stallholder wasn’t sure if it worked but it looked like it had been well looked after and was in pretty good shape. The battery compartment was clean so after a very brief haggle a price of £2.50 was agreed. A short while later, with a set of batteries installed, it burst into life and it proved to be impressively sensitive; as soon as time permits I’ll give it a proper test run. 

 

What Happened To It?

The 3001 was a remarkably long-lived product, first featured in the 1979 edition of the Radio Shack catalogue, listed as the ‘Standard’ model and costing $39.95. I can recall seeing it in the UK Tandy catalogue at around the same time and working on the typical dollar pound conversion rates at the time I suspect it sold on this side of the pond for somewhere £25 and £35. It remained virtually unchanged until its last appearance in the 1997 catalogue; the following year it was replaced by much sleeker and more sophisticated version, though for some reason the 3001 model number was retained. By the way, in case you are wondering how I know so much about Radio Shack catalogues, it’s because there’s a brilliant online archive, covering the years 1940 to 2011. Fascinating stuff for gadget collectors.  

 

Metal detectoring has been a popular and sometimes controversial pursuit for many years and there have been some spectacular finds over the years, however, it is unlikely that relatively simple designs like this one were involved. These day’s high-end models with all the bells and whistles will find and identify deeply buried objects and can cost thousands of pounds. Cheap and unsophisticated detectors like the 3001 seem to attract little interest from collectors and serious detectorists, though, even if they are a good few years old, so prices tend to be quite modest. I doubt very much that they will ever increase much in value;  there does appear to be a lively market for 'professional’ detectors but the chances of finding one at a boot sale for a tenner or so is probably quite small.


GIZMO GUIDE

First seen                                1979

Original Price                          $39.95 (£25)

Value Today                             £10 (1015)

Features           Sensitivity meter; controls: on/off volume, variable peak/sensitivity adjustment, ferrous/non-ferrous discriminator. Telescopic detector head, built-in speaker, 3.5mm mono jack earphone socket 

Power req.                     6 x 1.5v AA cells

Dimensions:                   Search coil 180mm dia; Hand module 250 x 140 x 100mm, fully extended 930mm

Weight:                          900g

Made (assembled) in:    China

Hen's Teeth (10 rarest):   6


Olympia DG 15 S Mag Disc Dictating Machine, 1963

Not so long ago a dictating machine would have been one of the most technically advanced pieces of equipment in a typical office, until the 1970s, when computers took over the world. We tend to think of dictating machines as a fairly recent, late twentieth century innovation, probably because of their association with magnetic tape recording, but they actually go way back. The first ones appeared in the late nineteenth century, based on Edison’s mechanical Phonograph -- and we'll be hearing more about that in a moment. What may be even more surprising is that in the early 1960s (possibly the late 50s), the heyday of reel-to-reel tape recording, leading office equipment manufacturer Olympia developed what is almost certainly one of the first portable magnetic disc audio recording systems.

 

It’s the Olympia SD 15 S, a quite remarkable machine that in terms of the technology might even qualify as the grandfather of today’s PC floppy and hard disc drives, and arguably a very distant cousin of early video disc systems – something else we'll come back to later on. The recording medium is a thin and flexible plastic disc – 155mm in diameter, a little smaller than a 45rpm vinyl single -- coated with the same sort of ferric oxide based magnetic material used on audio and video tape. As the disc spins a recording/replay head traverses the surface of the disc and recordings can be played back or repeated more or less instantly simply by moving the lever on the right hand side of the front panel.

 

Clearly this is a huge advantage for dictation, where a typist may need to listen to a passage several times, skip unwanted portions or jump quickly to another part of the recording. Of course all this is possible with tape-based recording equipment, but fast winding a tape back and forth is nowhere near as fast or convenient as simply sliding a lever. The really clever part, though, is how the tape head tracks across the disc and this takes us back to Edison’s Phonograph. The disc has a spiral groove stamped into the plastic and just like a vinyl disc, a stylus follows the groove, making sure that the recording head is always precisely aligned to the recording track. This sort of arrangement also has its disadvantages and wear is a problem, with the stylus eventually damaging the groove or scraping away the magnetic coating. To minimise wear the groove is deep, with a coarse pitch, which limits recording time to around 10 minutes. I haven’t been able to find out anything about the lifespan of discs, but I suspect it would have been fairly short and discs could probably only be reused a few dozen times before they became excessively noisy or unreliable.

 

On the plus side it is exceptionally easy to use and pretty much foolproof with all transport functions (record, replay, pause and stop) remotely controlled from a slide switch on the hand held microphone, which also doubles up as the loudspeaker. The only controls on the unit are two thumbwheels for on/off volume and recording level, and there’s an erase button. It also has a small round meter, which shows battery condition (it has built in rechargeable battery pack) and recording level. With the head position lever in the parking/off position (far right) a disc is inserted into a slot on the front panel. There’s no need for any time displays as the position of the lever knob shows the user exactly where it is on the disc, against a scale of minute markers and when it reaches the end of disc a built-in sounder starts bleeping. The user can also see that it is running, as markings on the edge of the disc platter are visible through a cutout on the lip on the front panel. As an added bonus it could be used for recording telephone conversations with a magnetic pick up, which may or may not have been supplied with the unit. Sadly this one didn't come with a manual, so it is unclear if this was a supplied accessory or an optional extra.

 

I found it on ebay and fully expected it to attract some lively bidding from vintage tech collectors. It came with its original leather carry case and vital accessories and from the photos it appeared to be in very good condition, though it was described as being for spares or repairs. I didn’t bother bidding and it was only by chance that I remembered that the auction was coming to an end, so, with a just couple of minutes to go I had a look, to see how high it had gone, but there were  no bids. More out of mischief than anything else I placed a £10 bid, to get things started and wind up what I supposed were hoards of collectors holding back until the last few seconds, and waited for the frenzy to begin. As you can see it never did, I was the only bidder and it was mine for the opening price of £5.00, plus £3.00 shipping.

 

I still cannot understand how it came to be ignored but I now have what seems to be a rare and unusual item of office equipment, and the icing on the cake is that it works. It was pretty much DOA when it arrived but the condition was exactly as described and it had been very well looked after. Fortunately it came with a working mains adaptor and once plugged in there were some distinct signs of life. A loud hiss from the mike suggested that the amp was working, and it sounded as though the drive motor was running. It didn’t take much to get it going again and most of the problems were mechanical, due to dried or caked lubricants on the drive train and pickup arm bearings. After a thorough clean up and oil change it was running smoothly again.

 

Fortunately it came with an envelope containing three discs, and on an empty part of one disc I was able to make, and playback a short recording. The discs had clearly been very well used and the magnetic coating was well past its sell-by date with background hiss only slightly below the level of the recorded sound. There were even a few short snippets of dictation from a previous user and judging by the content, these dated from the 60s or 70s. There was another surprise and the internal rechargeable battery hadn’t leaked and could even hold a charge for few minutes.

 

What Happened To It?

There is virtually nothing about this machine on the web so I am unsure about the date of manufacture but the early sixties seems like a very fair bet. Passive components (resistors, capacitors etc) on the circuit board and the six germanium transistors (2 x AC122, AC150 & 3 x heat sink cased AC117s) are all from around that era. The original selling price is also something of a mystery and when I get time I will do some research, looking for adverts and products reviews in the magazines of the day, but based on similar products it probably wasn’t cheap and I would not be at all surprised to learn that it was somewhere between £50 and £100, or upwards of £1000 in today’s money (early 2015). 

 

It is also difficult to say how long it was around, but the lack of information online and almost total absence of any others on ebay etc, are strong clues to it being no more than a few years, and it clearly didn't sell in large numbers... That also ties in with the rise and rise of relatively inexpensive and highly portable cassette tape-based dictating machines, like the Grundig EN3 (1964) and Philips PM85 (1967), which had swept aside almost all rival recording formats by the end of the sixties. Earlier I mentioned a fairly tenuous connection with videodisc recording systems, and there is indeed a bizarre similarity between the discs used by the DG 15 S and the CED (Capacitance Electronic Disc) system that was developed by RCA (also in the 1960s) and later bought to market in the early 1980s with the assistance of Hitachi. CED used a disc with a spiral groove, but information on the disc was recorded by varying the depth of the groove -- rather than a magnetic track – producing minute changes in capacitance that represented the recorded video and audio signal.

 

Without any other examples to compare it with, it is impossible to say how much this DG 15 S is worth, though I am convinced that if it had been spotted by a couple of vintage recording equipment enthusiasts it would have fetched a lot more than the £5.00 I paid for it. But I will play safe and put a value of £30 on this one, thanks to it being in such good condition, working order, having the original case and a useful assortment of accessories. As always I am open to clarification and corrections, and if anyone has a manual, or can tell me the date of manufacture and original price, please let me know.


GIZMO GUIDE

First seen                  1963

Original Price           £75?

Value Today             £30, (0515)

Features                   155mm magnetic disc (10 mins duration), remote record, pause function, volume & input level control, manual track/position selection, battery/recording level meter, bulk erase, telephone recording function

Power req.                        Internal rechargeable & battery 30VDC mains adaptor

Dimensions:                      285 x 195 x 55mm

Weight:                             2.8kg

Made (assembled) in:       Germany

Hen's Teeth (10 rarest):     8


Racal Acoustics AFV Headset, 1985?

Normally the items featured on these pages are pretty much complete but this Racal Acoustics AFV Headset, probably dating from the mid 1980s, has two important things missing. But first, and in case you were wondering, AFV stands for Armoured Fighting Vehicle, which is the first, and largest of those missing bits. The other one is a matching helmet, to which the headset can be attached, using a couple of press-studs, mounted on each earphone. The lack of a tank – a Chieftain or similar, compatible, armoured vehicle would do nicely – makes it difficult to thoroughly road test, though it appears that this headset also works with other vintage British military radio systems, such as the venerable Clansman, but again we do not have any suitable equipment to hand. The missing helmet is less of a problem, they turn up on ebay from time to time and the headset is designed to be used without one; it only needs to be attached under combat conditions, or when there's a good chance of being bashed on the head....

The obvious question is why is it so big and bulky, surely it could have been made smaller and lighter without compromising performance? Modern AFV headsets are indeed a little smaller, but not by much, and once you look closely at its intended application it is not hard to see how it came to be designed this way.

Durability is a major design factor, this means not just being able to withstand the rough handling it will receive, but the constant collisions with pointy metal objects in the confined space of an armoured vehicle. It is built to take the knocks and it wouldn’t be at all surprising to learn that its heavy-duty construction has saved a good few lives and prevented some very serious injuries. The second issue is noise, and the interior of a fighting vehicle can be a very loud place indeed, even when you’re not shooting or being fired upon or, so this sort of headset needs a very high degree of acoustic insulation. This means, at the very least, completely enclosing the user’s ears, and thick padding around the headphone to maintain an effective seal. This particular headset has an interesting extra feature, called acoustic valves. On each earphone there is a lever that opens what amounts to a vent to the outside, so that someone close can shout into it and be heard, for a private word, or without having to resort to the vehicle’s intercom facility.

The boom microphone on a headset has to do a particularly difficult job. It is vulnerable to impact damage, so it has to be sturdily built, and the sensitivity has to be set so that the high level of background noise won’t drown out the wearer’s voice. However, this also means that it has to be positioned very close to the user’s mouth, but not so close that it’s going to knock out teeth or get in the way. All this adds up to some tricky mechanical linkages, to allow it to be easily adjusted, and quickly swung out of the way if needs be. It’s vastly over-engineered but it does the job though modern AFV headsets now use a simple flexible stalk, which should also be lighter and more reliable. Keeping this heavy headset in place whilst being thrown about inside an AFV has been given a very high priority and there are three points of contact. On the top and bottom – to go around top of the wearer’s head and underneath the chin, there are adjustable webbing straps, and on the back there’s a padded and adjustable metal neckband that also carries the cable for the left side headphone. Once it has been adjusted it is surprisingly comfortable, which is just as well as it may have to be worn, in extremely arduous conditions, for prolonged periods.

Connection to the outside world is handled buy a single short cable, terminated in a standard 7-pin bayonet-fit connector. This carries audio signals for the headphone and microphone and press-to-talk (PTT) switching. An external PTT switch or ‘pressel’ is on the end of a short leads and this plugs into a 3-pin socket just below the microphone mount. This means that the headset can be used passively – to listen to what’s going on -- by the crew or passengers in the vehicle -- or actively, with a pressel, in intercom mode or when connected to communications equipment.

I found this one at an open air antiques fair held in Surrey several times a year. It was, as usual, pouring with rain; it appeared to be in very good shape and the stallholder was only asking £10 for it; he looked pretty wet and miserable so I didn’t bother haggling. The ethics of buying ex-military equipment at markets and fairs are always a bit confused and complicated – for me anyway. In theory being a fully paid up UK taxpayer I already own it, or a part of it, at least. I also have it in the back of my mind that the Ministry of Defence probably paid several hundred pounds for something like this when new, and without knowing how it came to be on the market – and there are many routes, legitimate and otherwise -- there is a chance that I could be buying stolen property. It doesn’t trouble me for very long though, and being vintage equipment it is extremely unlikely that any AFV crews are looking for it…

 

What Happened To It?

Racal Acoustics are still in the business of manufacturing ‘High Noise Headsets and Helmets’ along with many other items of communications equipment. One of the modern equivalents is the RA315 integrated helmet system. It’s a direct descendent of this one with the same basic layout and features, though lighter and more sophisticated with optional digital automatic noise reduction, improved comfort and immunity to electronic interference.

 

There is a huge market for all types of vintage ex-military equipment and prices are all over the place, so the best advice is not to get involved with the expensive or specialist stuff unless you know exactly what you are doing. Interesting ancillary gear, like this, is pretty safe though, and as well as being of interest to collectors and restorers, it can be put to some practical use. Headsets are cheap and plentiful enough for a spot of hacking and experimentation. For example, it wouldn’t take much to modify a headset like this to work with a video or PC gaming setup, though it would almost certainly involve replacing the headphone inserts, microphone parts and cable. It would also make a striking set of stereo ‘phones’, though you would need to put a fair amount of work into the acoustics to get it sounding halfway decent, and how about a eye-catching headset for your smartphone? This one was a good buy and the condition is excellent but it is by no means unusual and at the time of writing there were several similar AFV headsets, some with helmets, on ebay, with prices ranging from £15 to £50, so if you want to get noticed on the bus, train or tube – arguably not too far removed from an AFV -- dump those boring old Beats and get something with a bit of grunt and retro style!   


GIZMO GUIDE

First seen               1985?

Original Price         £? (probably hundreds ££s...)

Value Today           £10 - £50  (0115)

Features                 Articulated boom microphone, adjustable head and chin bands, acoustic valves, helmet attachment studs, standard 7-pin connector, secondary pressel connector, adjustable head and chin straps, padded neck band

Power req.                     n/a

Dimensions:                   150 x 210 x 170mm (ish…)

Weight:                          720g

Made (assembled) in:    England

Hen's Teeth (10 rarest):  6


POM Park-O-Meter Model S, 1964?

Believe it or not parking meter collecting, as a hobby, never really got going in the UK. Over the years most of us have stuffed a fair amount of money into these things, so why wouldn’t you want to own one (or several) of them? It could a great investment and you might even get some cash back as something as rare and aesthetically pleasing as an old parking meter can only increase in value… Over in the US there is a thriving collector’s market, and it’s not hard to understand the attraction, especially of the more ornate vintage models, made before they turned into soulless ticket dispensers. The traditional parking meter is a brilliant example of pure and functional engineering design and you would be mad not to want one (though you might have difficulty explaining that to the missus, so here's a couple of bullet points to help strengthen your case)..

 

It’s a machine, but one that has to work unattended, outdoors, often for several decades, under constant attack from everything that nature can throw at it. They also have to be able to withstand continual physical abuse from disgruntled users, and more determined attacks from n’er-do-wells, trying to extract the coins inside. As they are replaced most get sold for scrap, so it is up to us to help save them from extinction. The good news is that a few survive to make it onto the market, and this is the story of one of them.

 

It’s a POM Incorporated Model S, probably made in the early to mid 1960s, but it’s hard to be exact as this now classic design came into service in the late 50s and remained virtually unchanged for the best part of 20 years. By the way, the name POM derives from early designs, called Park-O-Meters. This model is made in the USA, in Russellville Arkansas to be precise and POM was, and still is a really big noise in the business; according to its corporate video it makes almost 30 percent of world’s parking meters, so they’ve clearly got the hang of it…

 

There are basically two parts to a parking meter of this type (three if you count the mounting pole, but we’ll take that as read). The lower half is the secure coin box and for obvious reasons this a heavy-duty item, designed to be vandal and thief proof, yet readily accessible to those responsible for emptying them. It’s basically a thick walled cast iron box with a hinged door, secured by a tubular type lock – more about that in a moment. Money falls into the security box through a slot in the top, which in turn is fed by a coin chute, that’s immediately below the meter’s coin feed and timer mechanism, in the top of the unit. The car-parker pops a coin into a slot on the side of the head unit and it rolls into a little coin-shaped holder. (This is easily changed or adjusted to accommodate different coin sizes and currencies). If the coin is too large or too thick it won’t get past the outer slot but if it is too small it will go in; it won't activate the mechanism but it will still be deposited into the coin box – and there are no returns.

 

Providing the coin is exactly the right size, as the handle on the front is turned a small lever engages a set of teeth on the clockwork timer mechanism, simultaneously winding the spring, moving an indicator to the amount of time that has been paid for, and lowering the yellow and red Expired and Violation flags. When the handle reaches its limit the coin, drops or rather is propelled by a small spring, into the slot in the top of the coin box. It is elegantly simple, there is very little to go wrong and it uses what I suspect may be a high quality Swiss-made timer movement.

 

There are numerous clever touches that can only have come from decades of experience in manufacturing these things. For example, the top part is hinged and it opens flat into the ‘service position’ allowing easy access to all of the innards. The timer mechanism and the display parts (time remaining pointer, flags etc.) are combined into a single module, held in place by just three screws so it can be removed and replaced in just a few seconds. It would also be a relatively simple matter to adjust or recalibrate a unit, which is clearly an important consideration when there may be hundreds or possibly even thousands of them in a city or municipality. Whilst it will take a sledgehammer to damage the case the viewing windows at the top are doomed to be scratched, cracked or broken, though they are made from a thick Perspex material. Replacing one or both of them is another routine task and each window is held in place by a handful of screws and there’s a rubber seal, to keep the weather out.

 

It has two locks and these have to be tough and secure, but this can be a huge pain for collectors as most of the time an old meter will not come with a set of keys. Basically there are only two ways to get these things open; either drill the locks, or pick them. Drilling is the quickest option but it can be destructive. Fortunately, on this model the top barrel lock can be opened without going through or damaging the keyhole. The lock’s latch mechanism is held in place on the rear side by a ‘blind’ bolt that has no slot, so all you have to do is drill it through the centre and the front will pop open. It can then be replaced with a screw or bolt that can be easily undone. The tubular lock on the coin box can also be drilled but it’s a tricky job, that snaps drills like twigs, and there is a good chance that it will visibly ruin the front of it. Surprisingly there is a fairly quick and simple picking method. If you know where to look on the Internet you can find pick tools for this type of lock for a few pounds, and they are very easy to use. The tricky bit is working out the exact type you will need as there are several variations in the size and the number of pins used, but this is something you can figure out with a little research, a torch and a magnifying glass. As an added bonus this type of picking tool can be used to derive a set of numerical values that any competent locksmith can use to create a new key.

 

And so to this one’s origins and I came across it at large open-air antiques fair that’s held in Surrey several times a year. The first time I saw it it was in a pile of half a dozen or more other meters of the same type, all without their mounting poles. The stallholder was asking between £50 and £80 for them, depending on the condition, and he was not open to haggling. That was well above what I was prepared to pay so reluctantly I passed them by. The next time I saw it, a couple of months later at the same venue, it was all on its own and clearly the runt of the litter. It was looking a bit battered and the windows were filthy so it wasn’t possible to see inside and check out the works. Since it was the last one, the chances of ever seeing another were small, but it being a wet and windy day, I managed to get the price down to £30. I asked the stallholder where it came from but he clearly didn’t know, or wasn’t telling, suggesting that they came from a council somewhere  ‘up north’. This was obviously a load of cobblers as I later discovered it was configured for US quarters (25 cents for 15 minutes), though how it got here and which American city they had been liberated from isn’t known.

 

As it turned out it wasn’t half as bad as it looked, the only real problem was the state of the windows and once I had it open it turned out to be just oily grime and all they needed was a thorough clean up with some detergent. The mechanism was in full working order but I treated the moving parts to a good clean and a light oiling. The big question was what to do with it? I was tempted to mount it on a pole, and turn it into a standard lamp but constructing a stable base for such a tall and top-heavy object would have been quite a challenge, so I opted for a simple round wooden plinth, culled from an old plant stand. As soon as I get time I plan to add a bulb holder and lampshade, to turn it into a table lamp. This should be quite easy to do, without damaging it, by bolting it to the thread in the back of the top lock. Even in its stunted form it’s great fun to play with. I keep a few quarters handy and it earns its keep; almost everyone who sees it insist on seeing what happens when they feed it with pennies, and ten and twenty pence pieces (I sometimes claim to have lost key to the coin box…).

 

What Happened To It?

Needless to say parking meters are still with us, and even mechanical models like this type are still in use in a few out of the way places. However, the vast majority are now digital, and this includes some Model S units as a few years ago POM produced an upgrade module, with an LCD display, that could be easily swapped for the clockwork mechanism. Stand alone meters are fast disappearing from the streetscape, though, as local authorities switch to ticket machines that serve multiple parking bays, and even they will be on the way out as mobile phone and on-line payment systems are introduced. This means that the already very limited supply of ex-council parking meters will dry up within a few years, which suggests, to me at least, that this is an area ripe for investment, so get one while you still can. Buy locally if possible but you really don’t see them very often, so you may have to be patient to find one at a sensible price. There are always a few on ebay, and at first glance prices seem quite cheap, but almost all of them will be in the US and shipping one across the Atlantic is likely to set you back the thick end of £50.


GIZMO GUIDE

First seen                 1958

Original Price          £?

Value Today            £50 (1214)

Features                  Coin operated (adjustable – set to US Quarters), 4-hour limit, high security coin box (tubular lock), adjustable violation flag delay

Power req.                    n/a (clockwork)

Dimensions:                  430 x 185 x 100mm (head unit, ex pillar)

Weight:                         7kg (ex pillar/mount)

Made (assembled) in:    Russellville USA

Hen's Teeth (10 rarest):  6


Raytheon Raystar 198 GPS, 1993

To paraphrase an old joke, where we would we be without GPS? We would be lost, of course, but maybe the joke is not as old as you think. Civilian GPS didn’t arrive until the early 1990s and it took at least another decade for it to become the mass-market product we are familiar with today. The first GPS satellites, originally called Navstar were launched in the mid 70s and used exclusively by the US military. Current GPS systems rely on a fleet or ‘constellation’ of 27 satellites (though only 24 are in use the rest are backups), the first of which went into orbit in 1989. Later the same year the Magellan NAV-100, the first hand-held civilian GPS receiver, went on sale, though it was horifically expensive and relatively few ended up in public hands. Concerned that the system could be used by enemy forces and terrorists the accuracy of the civilian system was deliberately degraded but it was still good enough be useful for navigation for aircraft, ships and boats, which brings us, at last, to the mighty Raytheon Raystar 198

 

This model first saw light of day in 1993, just four years after GPS went public and it was one of the earliest and most advanced marine receivers of the day, designed for fixed or handheld use. It had a price ticket to match and it would have cost you a whopping £1,200, or between ten and twenty times as much – taking into account the effects of inflation – of a modern, and vastly more accurate and better specified pocket GPS receiver.

 

The Raystar 198 is powered by a set of 6 AA cells (disposable or rechargeable) or a 12VDC power supply, fed to it through a set of contacts built into the quick release cradle. This also connects to a cartridge reader module into which you pop memory modules, used to store extra data or detailed navigational charts, otherwise known as ‘C-Maps’. The idea is you can switch between normal GPS plotting, using traditional latitude and longitude readouts and simple moving map displays, or a complex and now obsolete system known as Loran-C (LOng RAnge Navigation), based on the time delays of radio signals, sent from land-based transmitters. The Raystar 198 has 5 parallel tuners; modern units can have two or three times as many, to improve accuracy, speed of location and a stronger signal lock, though none of these matter quite so much in a marine environment, where reception tends to be pretty good most of the time, thanks to the lack of signal blocking trees, buildings and geographical features….

 

The most obvious feature is the large 105mm backlit monochrome LCD display, designed to be read in a very wide range of conditions, from bright sunlight to pitch dark on a stormy night. It shows lots of useful information for navigating the briny deep, but the all-important details of position, speed and heading get priority. The controls have also been configured to be easy to use, in thick wet gloves if necessary. Other handy features include a built-in memory that can store up to 10 routes and 200 way-points. There’s an Event option that records the receiver's present position, and right in the middle of the keypad, on numeric button 8 is a clever safety feature, called a MOB. This is the Man Overboard function and pressing it instantly stores the vessel’s position, and if it is still moving, provides precise directions to return to the point where the MOB button was pressed. It is housed in an extra-tough and hard-wearing plastic case and needless to say it is waterproof, apparently meeting specifications laid down by the US Coastguard.

 

This one was in a cardboard box full of nautical bits and pieces, found at a local car boot sale; the seller was pleased to see the back of it for £5.00, haggled down from £10. Judging by the thick film of grime, dust and dead bugs it had been removed from a boat some time ago and spent the last few years in a garage. All it needed was a good clean up and half a dozen AA batteries and it fired up straight away, the only problem was the display was dim and barely visible. The contrast setting was off the scale and the backlight had failed. Once I had managed to track down an instruction manual online the former was easy to adjust from a menu setting but the backlight problem needed an internal examination. It came apart quite easily and didn’t take long to track down the fault. The backlight consists of three tiny pea-bulbs and they had all blown. Rather than try and source replacements I experimented with 3mm white LEDs and 100R series resistors. This arrangement is possibly a little too bright so I may have to tinker with the resistor values, but they were a swine to fit so it can wait for another day.

 

Once the display was up and running I was able to test out the GPS functions, and apart from it taking an age to get a lock, it eventually pinpointed my location, however, being at least 30 miles from the nearest ocean, it was a little light on useful navigational data, in fact the only land-based details it shows are coastal towns and river inlets.

 

What Happened To It?

GPS navigation systems have improved at a near exponential rate but although modern devices are cheaper, more accurate and provide much more information, the basics – position, heading, speed and route – are really all that you need and I have no doubt that Raystar 198s like this one are still in use and helping sailors to find their way home.

 

Although it is still functional I suspect that most seafarers would opt for a more modern device, rather than a vintage model like this, so its value as a practical navigation aid is limited. Unfortunately it is not quite old, rare or interesting enough to be an investable collectible, but give it another ten years or so and first generation GPS receivers could easily rise in value, so maybe now is the time to start hoarding!


GIZMO GUIDE

First seen                1993

Original Price         £1,200

Value Today           £10 (1014)

Features                 hand-held/fixed operation, GPS/Chart Plotting, 105mm super twist LCD display, 5-channel parallel GPS receiver, C-Map Charts, memory capacity 10 route plans, 200 way points Event mode (stores present position) MOB button (man overboard, nav back to stored position) moving map  & switchable GPS/TD display, bearing & distance, built in (flip)/external antenna, C-Map cartridge reader, waterproof to US Coastguard standard

Power req.                    6 x 1.5 volt rechargeable AA cells /12 VDC

Dimensions:                  180 x 100 x 55mm 

Weight:                         1kg

Made (assembled) in:    Japan

Hen's Teeth (10 rarest):  6


Airmed Airlite 71 Aviation Headset, 1972

If you ever get a chance to go up in a light aircraft take it! It is as far removed from flying in commercial airliners, as it is possible to get. It’s proper flying, and you can even open the window (though it can get a bit windy…).

 

However, the real joy of this kind of flying is being up front, seeing where you are going, and trust me, even on the dullest of days, the view from a couple of thousand feet, in the cockpit of a small aeroplane, is something you will never forget.

 

Flying in a small plane is a blast for all of the senses, and something else you won’t forget is the noise. It is really loud, inside and out, you literally can’t hear yourself think, which is why you will need one of these. It is an aviation headset and whilst it might look like a pair of fairly ordinary headphones, with a microphone attached, it is actually a breed apart. Regular hi-fi headphones, even ones with designer labels and boom mikes, simply couldn’t function in the range of conditions general aviation (GA) headsets are designed to cope with, and all of those unique features are clear to see on the Airmed Airlite 71.

 

In most other areas of technology the Airlite 71 would be classed as vintage equipment. They first appeared in 1972, but another oddity in the world of fixed wing aircraft is the apparent slow rate of change and the basic design parameters of this headset date back to the 1940s. Not only can this headset be used in most of today’s fixed wing aircraft, headsets of this type are still in production.

 

Noise insulation is obviously a very high priority and this is handled by the all-enveloping ear cups, and very effective they are too. Normally they would be encased by a light cotton or foam cover, which helps seal the gaps, soaks up the sweat, and easily changed, when they get manky. Number two on the list of key features is comfort. These headsets are designed to be worn for extended periods of several hours, so there has to be a balance between weight and the tightness of the sprung headband, to keep them firmly attached to the wearer’s head, and maintain sound insulation, whilst avoiding the stress and discomfort of being too tight. The moveable pad on the top also helps distribute the weight, not that this one is very heavy, but after only an hour or so you start to notice a badly designed headset, and taking them off for a break during a long flight isn’t really an option.

 

The headset end of the microphone boom is mounted in a ball joint, allowing a wide range of adjustment, and it swings through more than 180 degrees, so it can be worn on the right or left side of the wearer’s head. There’s a fairly unusual feature at the other end of the boom and the microphone module on this headset is held in place by a simple clamp, so it can be removed, and exchanged. Different types are available, or can be made to order by the manufacturers, Clement Clarke Communications, to allow it to be used with a wide variety of comms equipment – on the ground and in the air -- and it also simplifies cleaning, repair and maintenance.

 

Finally, we come to one of the strangest features of most aviation headsets, the double jack plugs. One of them, connected to the headphones (wired in parallel for mono sound, and redundancy, in the event one of them fails), is a standard 1/4-inch mono jack (aka PJ-055). The other one is an odd beast, variously known as a PJ-068, M642/5-1 or the 206 General Aviation Microphone Plug (it’s .206 of an inch in diameter). This has four contacts, three of them connected, for the microphone, ground and the push-to-talk (PTT) switch. The latter is used when talking to air traffic control or in intercom mode, so that the pilot, co-pilot or passengers can talk to one another. The use of different sized jacks also means it is impossible to get them mixed up, when plugged in. Headsets like these can also be used in other types of aircraft, like helicopters, which have a single plug system, using readily available adaptor leads.

 

That would normally be the end of it, except that like all equipment designed to be used in aircraft, it has to be built to astronomically high standards. Failure of any safety critical component or system, and that includes communications, is simply not an option when you are swanning around the sky, and even though this headset was made more than 4 decades ago not only does it still work as well as the day it was made, it will probably still be working in another 40 years.

 

What Happened To It?

Both the Airlite range (now into the 100 Series) and Clement Clarke Communications, who these days are based in Edinburgh, are still going strong and you have to look quite closely at current models to spot any major differences between them and this old Airlite. Of course there have been some significant changes in aviation headset technology but these mostly relate to systems used in commercial aircraft. The light aircraft and general aviation industry moves at a much slower pace though, and there is, and always has been great belief in the tried and tested, and the old adage that if it ‘aint broke, don’t fix it.

 

This is one of several headsets that I have owned over the years and I swapped some aviation gear for it in the late 90s, when I used to do a spot of flying. At the time I had a much-prized David Clark headset (another vintage classic) but it’s always a good idea to have a spare set, as a backup and for the use of passengerst. They didn’t get much use whilst they work well, they never felt as comfortable as my trusty old Clarks.

 

I have not been able to find out how much they cost when new but like most things to do with aircraft it was probably a small fortune. A fair few would have been made, probably in the low thousands and in addition to light aircraft owners, customers included the Ministry of Defence, Civil Aviation Authority, Air Traffic Control and so on. Because they are so expensive, reliable and change so little relatively few aviation headsets end up in the public domain but when they do, they are generally sold by someone who doesn’t really know what they are about. Potential buyers often mistake them for language lab, computer or AV industry headsets, or are put off by the double jacks, so prices for GA headsets, sold outside of the aviation market, rarely reflect what they are worth. A pilot might expect to pay anywhere from £30 to £100 for a headset in good working condition, and substantially more for top brands like David Clark, but over the years I have seen a fair few at car boot sales, selling for as little as £5 – 10, so like a lot of specialised vintage tech, it’s basically worth what someone is prepared to pay for it.        

0714


GIZMO GUIDE

First seen                    1972

Original Price              £?

Value Today                £20 - £50

Features                      2 x earphones, wired in parallel 150 ohm impedance, fully adjustable headband, dynamic mike, interchangeable microphone module

Power req.                   n/a

Dimensions:                  Each earphone: 85 x 105 x 50mm

Weight:                         420g

Made (assembled) in:    England

Hen's Teeth (10 rarest):  6


Philips PL802T Semiconductor Valve, 1979

Whilst I do not collect old valves I do seem to have acquired rather a lot of them over the years. Most of them are more than 50 years old and probably no longer work but I am naturally reluctant to dispose of them.

 

I am not a big fan of the technology, in an earlier life I was on the receiving end of far too many shocks and burns, but I appreciate their quirky looks and warming glow, and some of them are really quite interesting but this one, the PL802/T, and that's it on the left 

of the picture, is surely one of the oddest, and it’s not even a valve…

 

By the late 1970s transistors had replaced valves in most consumer electronic products and they were no longer being manufactured, at least not in any quantity. However, there were still countless thousands of valve-based televisions and radios in circulation but service engineers were finding it increasingly difficult to repair them as stocks of replacement components ran out. The Dutch electronics giant Philips was one of the most prolific manufacturers of TVs and had been relatively slow to switch to transistors. Unfortunately several of their most popular models had a reliability problem with a valve, a PL802, which was used in the video output stage.

 

Rather than consign many perfectly good TVs to an early grave, for want of spare parts, Philips came up with a replacement for the PL802. Instead of a fragile glass bottle, it used solid-state electronics – a small circuit board with a pair of transistors and several passive components -- mounted on the circular valve base. When the glass valve failed, as they tended to do fairly frequently, all the engineer had to do was pull out the faulty tube and pop in a PL802T, which, by all accounts was more reliable and, some say, produced a better picture. It was almost certainly cheaper too, and definitely more robust.

 

I first came across solid-state valves whilst moonlighting as a TV repairman. At the time -- the late 70s -- I was working for Ferguson, who incidentally, were the first to develop an all-transistor colour TV. I never enjoyed working with valves, hot, nasty things with a tendency to give you a belt if you so much as looked at them. Unfortunately the PL802T wasn’t much better and it was fed by the same voltages and seemed to get just as hot as the valve it replaced. This was inevitable; valves are designed to run hot and the glow you see is their internal heater element. These are generally wired in series, so whilst the PL802T didn’t need to warm up, it had to have the equivalent of a heater to maintain the circuit for the other valves. The heater in this case is a the large white 47 ohm resistor sitting in the middle of the circuit board, and boy, did this get hot!

 

I found this one in a box of vintage parts given to me several years ago by a friend having a clearout. Judging by the condition it had never been used and probably still works. Several companies manufactured these devices, there is no maker's name on it but the transistors are Philips devices so I am crediting it to them.

 

What Happened To It?

Solid-state valve replacements have been around since the late 1960s. An exotic cousin of the transistor, called a FET (Field Effect Transistor), has similar characteristics to and can even be semi-directly substituted for some valves, often with only minimal modification to the circuitry. These devices proved to be particularly popular in the US where a company called Teledyne manufactured a wide range of valve replacements called Fetrons. The American consumer electronics market was then, and to some extent still is quite conservative, with a great deal of inertia when it comes to change. This was in stark contrast to what was happening in Europe and the Far Easter, which was quick to embrace the transistor, and couldn’t wait to banish old fashioned valves to the scrap heap so devices like the PL802T and Fetrons had a comparatively short life over here and although familiar to service engineers, were not that common.

 

There is a small and apparently thriving collectors market for old valves, not to mention a steady demand from hobbyists determined to keep the technology and the gadgets that use them alive but it is clearly not a mainstream pursuit. The majority of valves go for just a few pounds on ebay and I doubt very much that this one would sell for more than £5.00, even on a good day. There are exceptions, of course and some ultra rare or specialist valves can fetch a very pretty penny but it’s unlikely that you would come across any really valuable ones, or know what to look for and be able turn a profit without doing a lot of homework. Nevertheless there’s an opportunity for budding collectors looking for a cheap hobby, and some of the bigger, fancier ones can be quite decorative. 

0414


GIZMO GUIDE

First seen                     1979

Original Price               £?

Value Today                 £5

Features                       Semiconductor valve replacement, 2 transistors (BF459 & MPSA42)

Power req.                    In circuit supply

Dimensions:                  80 x 30 x 30mm

Weight:                         30.4g

Made (assembled) in:    UK?

Hen's Teeth (10 rarest):  6


Philatector Electric Watermark Detector, 1955

In common with just about every other kid of my generation I used to collect stamps. For a brief period it proved mildly diverting – there really wasn’t much for pre-teens to do to do in late 50s and early 60s -- but other interests took over and I didn’t give much thought to Philatelic pursuits until I came across this little box at an antique fair.

 

The name, more than anything else, caught my eye, and I had a nagging urge to know what a Philatector, Electric Watermark Detector was all about. Anything with the word Detector in the name sounds interesting but I confess to being a little disappointed by the reality, which turned out to be a Bakelite box with a switch and on the top and a torch bulb inside, shining through a rotating wheel fitted with 6 colour filters. To be fair it is actually a sophisticated optical instrument. It uses quite advanced optical techniques to reveal hidden or obscure watermarks in postage stamps that can be used to verify age and authenticity; with rare stamps changing hands for hundreds and sometimes tens of thousands of pounds, it can be a big deal. It is also reasonably safe to use; rival methods for revealing watermarks in stamps usually involve dousing them with noxious, toxic and often highly flammable chemicals, such as benzene.

 

The idea is very simple. The stamp to be checked is placed in a carrier, basically a sandwich of two transparent sheets of plastic. This slides into a slot in one end of the box, between the light source and the colour filter, and by rotating the filter wheel the different wavelengths of light can help to make the watermark, if present, easier to see. It really works too and clearly revealed the hidden marks on stamps from my old album – I knew it would come in handy one day… In addition to the filters on the wheel the outfit comes with a pack of envelopes containing supplementary filters, which are placed in front of or behind the stamp in the carrier and according to the instructions, can ‘assist in the detection of the more elusive watermarks’. Apparently when used in conjunction with the filter wheel it is possible to create more than 300 colour combinations.

 

Although this device is patented it seems that the technique of using filtered light to detect watermarks goes way back, at least to the early years of the 20th century. This Philactor, which cost me £3.00, is in suprisingly good condition; in fact it looks as though it has rarely been out of the box. It was a bit grubby inside but there were no signs of corrosion or cracks in the Bakelite, which is notoriously brittle. It needed very little work to get it going; the flat 3R12 4.5 volt lamp battery it was designed to use is now virtually obsolete, they can still be found on ebay but it was far easier to wire in a modern 3 x AA cell holder, which fits snugly in the battery compartment. Both the push-button switch and torch bulb functioned perfectly. Incidentally the glass bulb seems to have been coated with a thick varnish like substance, possibly to act as a diffuser, either that or it was caked on grime, but it didn’t rub off, so left as-is.

 

What Happened To It?

I managed to find a few brief references to the Philatector and it makers, H & A Wallace Ltd of Broad Street London. It appears that they were a well-known and long established firm of stamp collectors and dealers though it is not clear when this one was made and 1955 is a guess based purely on an ad for an identical model in a Canadian magazine of the same year. However, it seems to have been around for a while, in one form or another, possibly appearing in the mid 1940s, with plastic cased versions being manufactured up until the early 1980s. 

 

Philatectors clearly sold fairly quite well and there are generally two or three of them on ebay at any one time. Most like this one are in dark brown Bakelite but there’s also a version in white, which may be rarer. Prices vary but it doesn’t seem to be a sought-after collectible and the few auctions I have followed generally attract only two or three bidders and the selling price seldom go much above £10 to £15. This seems quite low, considering the age, the popularity of Bakelite and the ongoing interest in Philately. Maybe its not one for investors looking for a quick profit, but with prices as low as they are, it is the sort of thing that should increase in value, albeit only modestly, as the years go by.

0414 


GIZMO GUIDE

First seen                      1945?

Original Price               37/6 (£1.87)

Value Today                 £10

Features                        6- colour filter where (red, green, cyan, blue, magenta, grey (ND/polarised?), press button on/off switch, 4 x supplementary colour filters, transparent stamp carrier 

Power req.                    3R12 4.5volt lamp battery

Dimensions:                  115 x 88 x 40mm

Weight:                         182g

Made in:                        England (H&A Wallace Ltd, 94 Old Broad Street, London EC2)

Hen's Teeth (10 rarest):  5


Electrolysis Cell?, 1975?

For me, secondary school chemistry lessons were unremittingly dull and seemed mainly to deal with impenetrable formulae and mostly slow, and rather boring chemical reactions. That doesn’t mean I didn’t take a keen interest in chemistry outside of school and in the 60s and 70s you could buy the key ingredients of gunpowder, and many other now illicit, toxic, caustic and potentially explosive compounds from your friendly local chemist, no questions asked…  One classroom experiment I do recall, though, was the generation of hydrogen and oxygen, by passing an electric current through water, and to prove it the teacher set fire to the gasses, producing a satisfying fireball

 

Based entirely on my feeble grasp of chemical theory we have here, what I believe to be some sort of electrolysis cell, though judging by its complexity I doubt that it is designed to anything so mundane as generating hydrogen and oxygen from water. It is far too elaborate for that, but the real problem I have with it, is that I can’t see how it could accomplish any sort of electrical or chemical reaction. Allow me to explain. It consists of three glass vessels. The outer one appears is separate from the other two and has just one entry point, a short bent tube, stoppered off with a rubber bung, pierced by a wire electrode. The central vessel is also sealed from the rest of the apparatus and has two glass tubes coming out of it, at the top and bottom, which I assume is to allow a flow of water, to cool or possibly heat the surrounding vessels. The innermost one is shaped like a test tube, it sits in the centre and it also has a bung with what looks like a copper wire electrode, passing through it.

 

What it does and how it works is complete mystery. The inner and outer vessels, the ones with electrodes, are not connected in any way and as far as I can see no current can flow between them, and this, as I recall was how electrolysis worked. So this is where you come in and I would be grateful if anyone out there can tell me what this exotic piece of scientific glassware is for? I have no other clues; there is no maker’s name, or any markings of any kind for that matter, but the well-made wooden stand suggests to me that it may be an educational or demonstration piece, rather than a working component in some chemical process or other.

 

The only other facts, which are of no use in determining its purpose, is that it was in a box of chemical apparatus that I bought at an antique fair in Surrey about twenty years ago. There were probably around 50 to 60 items, mainly flasks, test tubes, slides and dropper bottles. Almost everything was in new or unused condition, except this item. It shows some signs of use, there are white deposits on the inside of the glass, which proved impossible to remove with washing up liquid or vinegar, there is some slight corrosion to the electrodes and the rubber bungs are now hard and cracked. It looks and feels like something that might be 20 or 30 years old but this is the only reason I have put the date at 1975. Since it is a guess and probably completely wrong I look forward to someone putting me right.

 

What Happened To It?

Without know what it does it is difficult to say if these things are still in use, or it is old technology and has been replaced by a newer, more efficient device or process. What I can say, with some conviction, is that it is a fine example of the glassblower’s craft; I seriously doubt that something this complex could be mass-produced. For me that is what makes scientific glassware collectible. I suspect that it has little intrinsic value but there are probably not too many of them around, it is a wonderful looking thing, and hopefully one day I will know what it does...

0214


GIZMO GUIDE

First seen                       1975?

Original Price                £?

Value Today                  £20

Features                        Triple glass vessels, twin metal electrodes, cooling/heating jacket

Power req.                     N/A

Dimensions:                   280 x 130 x 90mm

Weight:                          220g

Made (assembled) in:    UK?

Hen's Teeth (10 rarest):  8


Aibo ERS-111 Robotic Pet, 1999

If the movies have taught us anything it won’t be global warming, disease, pestilence, famine or nuclear war that wipes out humanity, it will be malevolent robots, created originally to be our servants. My own Terminator 2 moment came in a Soho restaurant in December 1998. I was at an informal lunch with some Sony bigwigs and engineers, who had just flown in from Japan, for a chat about some upcoming developments in home cinema. Without warning one of them opened a bag and pulled out what looked like a large toy dog. Within moments every single person in that restaurant stopped eating and gathered around the table, hardly able to believe what they were seeing.

 

It was a pre production Aibo (Artifical Intelligence Robot, and roughly translatable as 'pal' in Japanese), later to become one of a line of so-called Entertainment Robots. It was pretty crude by current robotic standards, but back in 1999 nothing like it had been seen in public and it was quite simply astonishing to watch. This small mechanical creature strutted around the table, which by now had been cleared; it reacted to sounds and its surroundings, it trilled, wagged its tail, showed signs of emotion with its light up eyes, even played with a bright pink ball, and when it lifted one of its hind legs, to take a pretend pee, we all burst out laughing. What came next stunned everyone. One of the engineers gave it a push and it fell over. The Aibo looked around for a few moments, as if taking stock, then calmly swung its legs around, pushed itself into an upright position and stood up, and I think we all knew then that our days as the planet’s dominant species were numbered.

 

A few months later, on June 1st 1999, orders for the first production Aibos, the ERS-110 were taken via the Internet; the first run of 3,000, for August delivery, sold out within 20 minutes. That was in spite of having a selling price of more than £2000. The ERS-111, which had a number of minor improvements, followed in November the same year but this time the 3,000 models intended for the Japanese market sold out in just 17 seconds.

 

Aibo’s main claim to fame, and what separated it from the other walking toys and robots of the day was the highly articulated mechanics that provided such lifelike movement, but above all, it was the sophisticated software (Aiboware) that brought it to life. Straight out of the box Aibo behaved like a newborn puppy, hardly able to stand up and showing limited awareness. Over a period of three months it grows into adulthood, learning to walk, developing a personality, going through a difficult adolescence, becoming increasingly lively and playful, then slowly settling down into a gentler, more thoughtful maturity.

 

Yes, it is just a machine, but watching one growing up and developing is an eerie experience and all too easy to start believing it is alive. A lot of owners did just that, giving their robot dogs names and treating them like living, breathing pets, and suffering genuine grief when they became ill or died. The pre-ordained development process was only part of the story, though. It was possible to customise Aibo’s behaviour by plugging in Memory sticks, programmed with different personalities, tricks and emotions, and for those adept at programming, teach it to do entirely new things. A small cottage industry grew up around Aibo, producing a vast range of accessories and toys, and when new models were launched, the queues to be first to get their hands on one would have brought tears to the eyes of the Apple Corporation.

 

I wanted an Aibo within moments of meeting it for the first time but it was way above my pay grade and I had to make do with brief sessions with review samples. I finally got my first one, an immaculate-looking black ERS-111, in around 2001. I found it on ebay, from a French seller, with a buy-it-now price of only £100. By then the ERS-111 had been replaced but it still seemed too good to be true, even though it was sold as faulty. I naively thought it would be something simple and I could get it going again. Unfortunately, as I discovered, it was an old dog, literally, and had clearly been pulled apart and tinkered with many times, by a cack-handed idiot, judging by the state of the main processor board. It was clearly beyond help. I started looking around for repair advice and a spare board and quickly came to the conclusion that it would be cheaper to buy a new one, so it went into the garage where I forgot about it for over a year.

 

I later found out there had been a very high casualty rate amongst first generation Aibos. Many had been given to children, with predictable results, and a lot had come to grief, falling down stairs and out of windows, or being trodden, on – the legs were quite fragile and easily broken. The ERS-111 was only in production for a year or so and replacement parts were in very short supply, which gave me an idea. The Aibo uses modular construction and the legs, head, tail and body modules detach easily. All of the parts -- aside from the processor board -- on my dead Aibo were in good condition, and in working order. By the time I got around to putting the parts on ebay, prices for spares had shot up and I made more than enough (a little over £300) to buy the fully working ERS-111, which you see here. 

 

What Happened To It?

Aibo went mainstream in 2001 with the launch of the ERS-210; it had numerous new features, including speech recognition smoother, faster movement and smarter software. It was swiftly followed by a succession of fancy coloured and styled variants and special editions each one cleverer than its predecessor, cuter, with more tricks and more lifelike behaviour, but the fad had run its course. By the mid noughties there were countless robotic wanabees flooding out of the Far East. Most of them were nothing but crude imitations of Aibo but the damage had been done and Sony found it increasingly difficult to sell what was still a premium product -- a toy for grown ups -- in a bargain basement market. The end came in 2005 with the last model, the ERS-7M3. Sony maintained an interest in robotics with a humanoid called Qrio but in spite of promising performance it too was shelved, in 2006.

 

Prices for classic first generation Aibos have remained fairly steady over the years and ERS-111s routinely sell for £1000 or more; ERS-110s, when they come up, can easily fetch £1500. Even later models have held their prices and you will be lucky to find one in working order, boxed with accessories and in decent condition for under £400.

 

Developments in robotics continue to come thick and fast. Almost every day we hear of new autonomous machines that can run, jump, climb, pick things up, fly around and drop bombs. Many of us now take it for granted that one day they will take over, and it will be our own fault. All of the signs of the downfall of mankind were clear to see back in the late 90s. This innocent looking little robot dog was where it all began, lulling us into a false sense of security. It’s surely only a matter of time before we’ll be the ones performing for the amusement of our metallic masters. You have been warned, flee now, before it is too late!

1213


GIZMO GUIDE

First seen                       1999

Original Price                £2000

Value Today                  £1000

Features                        4 x articulated legs (3 axis), head (3-axis), tail (2 x axis) , mouth (open/close), 180k pixel colour camera, infra-red rangefinder, 3 x touch sensors, stereo microphones, LED expression (green happy, red angry), speaker, heat, acceleration and angular velocity sensors, 64-bit RISC processor, 16MB RAM

Power req.                     7.2v Lithium Ion battery pack

Dimensions:                   160 x 270 x 275mm

Weight:                          1.4kg

Made (assembled) in:    Japan

Hen's Teeth (10 rarest):  8


Science Fair 65 in 1 Electronic Project Kit, 1972

I have said it before, and I’ll say it again, if kits (and I hesitate to call it a  'toy') like this were still on sale there wouldn’t be such a desperate shortage of engineers and scientists in this country. The Science Fair 65 in 1 Electronics Projects Kit, dating from 1972, was one of the last of a very long line of mechanical, electrical and electronic assembly and construction kits sold throughout much of the 20th century. They taught and inspired generations of kids, resultng in a great many of them becoming the designers, inventors and engineers that our modern society depends so heavily upon. Okay, science kits of one kind or another are still around, but they’re mostly bland, sterile, safe and it seems to me, have little or no educational value, but above all, they’re no fun, and that’s what gets kids involved, and keeps them interested.

 

Take this one. With a few dozen simple electronic components you can build 65 electronic devices, and the components are right there in front of you, not sealed away inside plastic boxes. To be fair around a third of the projects are a tad dull, or worthy, but there are plenty of weird, wacky ones too, like a questionably legal AM Transmitter. There's also a lie detector, electronic organ, plant growth stimulator, sonic fish caller, solar powered light meter, siren, burglar alarm, metronome, timer, high voltage generator, radio, amplifier, and even some simple logic circuits that give the user a real insight into the inner workings of digital electronics. That’s a key feature of this kit, it doesn’t just tell you how to wire up a circuit, there’s an easy to follow explanation of how it works, proper circuit diagrams, and even some cheesy cartoons, to help those who find learning a chore, grasp what is happening.

 

It is really easy to use, which also helps encourage the reluctant to have a go. All of the components are connected to springs, which act as terminals. To make connections simply pull up on the springs and insert wires, following the drawing or connection table in the excellent manual. In this way you can build, tear down and construct another project in under an hour, and you can’t help but absorb some sense of what you are doing from the clearly labelled parts and diagrams; more so if it doesn't work first time, as you then have to work out what's gone wrong.

 

Everything is neatly laid out and colour coded and the kit is housed in a sturdy wooden tray. This helps keep it all together and provides storage for wires and loose components, like connecting wires, the Morse key and earphone. Everything you need to create some electronic magic is included, apart from the batteries, of course (2 x AA cells and 1 x PP3).

 

What Happened To It?

Science Fair is one the house brands of the US Tandy Corporation, better known for its chain of Radio Shack stores (others brands include Realistic and Archer). Tandy came to Europe in the late 70s and at the peak of its popularity had stores in many UK high streets, which is almost certainly where this kit originally came from. Tandy’s timing was unfortunate, though and by the late 80s the slow decline in interest in electronics, as a hobby, had begun and it pulled out of the market, selling most of its stores to Carphone Warehouse in 1999.    

 

This particular kit cost me the ridiculous sum of just 99 pence in an ebay auction. The cardboard lid is a bit tatty, and the manual a little dog-eared but inside it is in excellent condition and complete. It all still works too; it managed to keep this old kid amused for hours, and brought back a lot of great memories 

 

Over the years Tandy/Science Fair produced numerous versions of the Electronic Project kit; later editions are called ‘Labs’. However, for me the most interesting examples are from the late 60s and early 70s; they are much more ‘hands-on’ than the newer ones, use proper vintage components, and that wooden case is a whole lot nicer than a cheapie plastic box. I paid well under the odds for this one and kits of this type, in good to fair condition, generally go for between £15 to £25, which is about right. There’s still quite a few of them around so prices probably won’t go up very much in the short term, which makes them affordable, and collectable. One word of warning though, if you fancy a dabble, it doesn’t matter too much if one or two basic electronic parts (resistors, capacitors, transistors etc.) are missing or blown as they’re relatively easy to replace but make sure that it comes with the all-important manual or you will never get to build and experience the full wonder of the Sonic Fish Caller…

1113


GIZMO GUIDE

First seen                      1972

Original Price                £20?

Value Today                  £15

Features                        65 projects: 3x transistors, 1 x SCR 3 x diodes, 10 x resistors, 7 x capacitors, variable capacitor & resistor, ferrite antenna & coil, audio transformer, solar cell, moving coil meter, relay Cadmium Sulphide (CdS) light sensitive cell, lamp, speaker, Morse key, earphone

Power req.                     2 x 1.5v AA cells & 1 x 9v PP3

Dimensions:                   450 x 285 x 58mm

Weight:                          1.6kg

Made (assembled) in:    Japan

Hen's Teeth (10 rarest):  6


Microphax Case II Microfiche Reader, 1993

Technologies tend to come and go in a relatively sedate manner, but rarely has one, that was so well established, disappeared from sight so quickly. From around the late 1920s to the early 1990s Microfiche, or Microform, to give it its proper generic name, was the dominant storage medium for archiving, distributing and displaying large volumes of information – books, documents, diagrams, images and so on. You might even say it was the pre-digital equivalent of today’s portable document format or .pdf file, which is pretty much what killed it off. By the mid nineties Microfiche was in very steep decline and by the early noughties it was virtually extinct.

 

Microform is a very old technique, dating back to the late nineteenth century. It is elegantly simple and essentially documents are photographed using a special camera. The images are then reduced in size and printed on paper or transparent film, which can be viewed on a variety of optical reader devices. In this way enormous amounts of information can be reduced in size. Libraries of thousands of books can be condensed into a single filing cabinet, making storage and indexing a great deal simpler.

 

Microfiche is one of several popular Microform formats that were developed over the years. In this case the ‘fiche’ is a postcard-sized flat film, which typically holds around 250 images, that began life as A4 or A5 sized pages and reduced in size by a factor of between 25 and 50 times. Microform film also comes in rolls (Microfilm) and at the other end of the scale there is the Microdot. These were much favoured by spies and spooks during the Cold War. If the books and movies of the time were to be believed, used extensively to conceal and smuggle secret plans for doomsday machines and chemical weapon formulas, and such, by reducing the image to the size of a full stop.

 

From the 1940s to the 90s Microfiche and Microfilm was extensively used by libraries, educational establishments, industry and government and by newspaper and magazine publishers, anywhere in fact where it was important to be able to easily store, catalogue and quickly retrieve data. The fiche showing on the screen and in the photo above is another good example of how it was used. This is from a parts catalogue for the 1987 Jaguar XJ-S, right down to the last nut and bolt. It was the sort of thing that all Jag dealerships, repair centres and car parts seller had in their parts libraries with, of course, a Microfiche viewer, which brings us neatly to the Microphax Case II.    

 

Microfiche and Microfilm readers are normally about the size of a desktop PC and CRT monitor, but this is a slightly unusual design because it is portable and folds up into a small attaché case. It’s probably stretching the analogy with digital .pdf files, but this would be the Microfiche equivalent of a laptop. Microphax was one of dozens of companies making Microfiche viewers and until its demise in 2003, was based in Abingdon, Oxfordshire. The Case II was one of a series of portable readers from the company, and although I can’t be certain, it probably dates from the early to mid-90s, which makes it one of the last of its kind.

 

It is incredibly easy to use. Simply open the case lit, pull out the folding screen and lock it into place with a twist of a knob on the front. The fiche is then loaded into the carrier by sliding it to the far right of its travel. It fits between two sheets of glass and once in place, moved to the central viewing position, over one of a pair of lenses, Behind the lens there is a 50 watt projection bulb, powered by 220 volt mains or 12/24VDC; a mains cable and car adaptor lead are stowed in a compartment underneath the viewing screen. All you have to do is switch it on; the bulb shines through the lens and fiche, onto a pair of mirrors then onto the rear of the frosted viewing screen. The two lenses, which are mounted on a sliding carrier, give normal and magnified views, and there’s a pair of focus knobs for sharpening the image. The fiche carrier slides smoothly in both X and Y-axis, making it quick and easy to locate a particular image or document. As you can see from this example the image is reversed or in negative, which reduces glare, making it easier on the eye, and improving legibility, especially for things like diagrams.

 

I stumbled across this one at a Dorset flea market. The case top was closed but for some reason it caught my eye and on closer inspection the interesting looking contents appeared to be in good condition. The stallholder had no idea what it was, and I wasn’t entirely sure at the time, but he was happy to let me take it off his hands for a fiver. After a mucking out to remove the dirt and cobwebs I plugged it in and switched on and it lit up straight away. Although I had used viewers like this in the past I didn’t have any fiches to hand so it wasn’t until I bought that Jaguar parts catalogue on ebay (£1.00 plus postage) that I was able to give it a proper test run. The result, as you can see, is that it works really well, which wasn't that surprising as there is hardly anything to go wrong. I hope to add to my collection of fiches, and at the time of writing there’s no end of weird and wonderful things selling on ebay, from 1960’s British Rail engineering drawings to nineteenth century census records, many of them going for just a pound or two

 

What Happened To It?

For all of Microfiche’s flexibility and convenience it was no contest when the digital revolution started to take hold in the late eighties. The biggest disadvantage is that it’s a physical format and simply can’t complete when information is needed instantly or on the other side of the world. Of course it hasn’t entirely disappeared and is still in use in some areas, though this is usually in situations where large or historic archives have yet to be, or are in the process of being digitised.

 

The system’s inherent simplicity and reliability means that there is no reason why viewers and fiche libraries won’t still be useable in another 100 years, and unlike digital technology, there is no chance of the hardware or storage medium becoming obsolete. In the scheme of things it seems unlikely that Microfiche and Microfilm viewers and films will become prized collectables. That’s good news for bargain hunters and there are plenty of decent readers going cheap on-line, but maybe not for much longer as I suspect that a lot of old viewers and fiche libraries are being junked.

1113


GIZMO GUIDE (Manual)

First seen                       1990?

Original Price                £150?

Value Today                  £5 - £25

Features                        Folding screen, dual lens, manual focus

Power req.                     220VAC or 12/24VDC

Dimensions:                   Open: 480 x 450 x 150mm, Closed: 370 x 340 x 150mm

Weight:                          5.5kg

Made in:                        England

Hen's Teeth (10 rarest):  5


Wittner Taktell Electronic Metronome, 1980?

At first glance, and from a distance the Wittner Taktell looks a lot like sixties transistor radio. On closer inspection, what seems like a tuning dial is labelled with unfamiliar station names, such as Andante, Largo and Presto. The more melodically minded amongst you will immediately recognise those as musical tempos (or should that be tempi?), so if you haven’t already guessed, or read the title of this piece, this is an electronic metronome.

 

Metronomes are an essential tool for learning and practice on any kind of musical instrument, providing audible and visual timing cues. Traditional metronomes are usually driven by clockwork and produce a rhythmic tick, the speed of which is controlled by sliding a weight up or down a swinging pendulum. On this electronic metronome the tick comes through the speaker below the dial, and the visual reference is a flashing LED. The rotary dial on this model varies the tempo at between 40 and 208 beats per minute, and this is divided into 8 ranges, labelled: Largo (40 – 60 beats per minute), L’gh (Larghetto, 60 – 66bpm), Adagio (66 – 76bpm), Andante (76 – 108 bpm), Moderato (108 – 120bpm), Allegro (120 – 168 bpm), Presto (168 – 200) and Prestiss (Prestissimo 200 – 208bpm). A three-way slide switch on the lower right side of the dial selects Beats, Off and Light, and the blinking LED is on the lower left side of the front panel. Power comes from a 9-volt PP3 battery, which fits into a holder in the back of the case.

 

Wittner are a family owned company, based in Germany and they have been in the Metronome business since 1895. However, for a firm with such a long history it has proved to be unexpectedly difficult to pin down a date for this model. My best guess is late seventies to early eighties, but this is pure speculation and based on the cosmetic styling, components on the printed circuit board and the front panel, which says ‘Made in West Germany’. This last clue suggests that it was made before German reunification in 1990, but quite honestly it could easily be ten years either way, so without more hard evidence or help from the web, I am open to guidance or correction from more informed sources.

 

For the record it cost me the princely sum of £1.00 at a supersize car boot sale in deepest darkest Kent, a price that made it too cheap to haggle, or even ask the stallholder if it was working. As it turned out I didn’t need to ask; it came with a battery and switching it on produced loud and satisfying ticks and bright flashes. It had clearly been very well looked after, musicians almost always take very good care of their instruments, so it wasn’t a huge surprise and all it needed to return it to showroom condition was a quick wipe over with a cloth.

 

What Happened To It?

Wittner still make metronomes, from electronic and funky coloured mechanical models to high-end and very traditional designs, as well as a wide range of musical accessories – tuning forks, violin chin rests and tailpieces and suchlike. Current electronic metronomes bear a passing resemblance to this one – the big dial is an instantly recognisable feature -- but the styling is more up to date and they mostly have more features.

 

Modern metronomes cost anywhere from £10 to several hundred pounds and antique instruments can sell for thousands, but this one isn’t sufficiently old or interesting enough to tickle the fancies of either musicians, or mainstream collectors, but I have no doubt whatsoever that it is worth more than the £1.00 I paid for it. It could be as much as £10 on a good day, so it probably won’t be contributing much to my retirement fund but it’s another one of those quirky electronic widgets that, like me, don’t get out very much and now that I have it, it might just inspire me to dig out my old guitar and see just how much I have forgotten…

0813


GIZMO GUIDE

First seen                      1980?

Original Price                £??

Value Today                  £5

Features                        Electronic metronome, 40 – 208 beats per minute, continuously variable, switchable audio output or blinking LED

Power req.                     1 x 9v PP3

Dimensions:                   132 x 74 x 43mm

Weight:                          210g

Made in:                        West Germany

Hen's Teeth (10 rarest):  5


Gowlland Auriscope/Otoscope, 1955?

At one time or another most of us have had one of these stuck in our ears. It’s called an Auriscope or Otoscope -- the two names appear to be interchangeable -- and quite simply it is an instrument used by medics to look inside the ear canal, and sometimes to peer up noses as well. This one was made by a company called Gowlland, probably sometime in the 1950s, though it may be later or earlier as the design really hasn’t changed very much over the years.

 

It’s an apparently simple looking design, but don’t be fooled there’s a lot more to it than meets the eye. The key components are the handle, which doubles up as a battery holder, and on this is mounted the eyepiece, which consists of a lens – around 2x - 3x magnification -- and a removable conical shaped probe or specula, which is the bit that gets inserted into the ear. Inside the cylindrical eyepiece there is a small light bulb, because ears are very dark places.

 

There are a several other features that are not immediately obvious. The first is the thumb-operated switch at the top of the handle. It’s actually a brightness control, it's what in the old days used to be called a rheostat. Essentially it’s a variable resistor, comprising a small semi-circular former on which is wound a tight coil of fine resistance wire. The thumb lever moves a contact across the windings, changing the resistance and hence the brightness of the bulb. Oddity number two is the bulb. It’s tiny, as you would expect, but my guess is this one is specially made. It’s possible this is, or was, a requirement for medical devices, to ensure safety and sterility.

 

The battery is also an unusual size. It looks as through it takes two cells, somewhere between today’s AA and C cells in size. Possible candidates include the Eveready E126, and a close modern equivalent the A1611. However, these are all rated at 9 volts, making the supply to the bulb a hefty 18-volts. This sounds a tad high and the bulb in my Auriscope was glowing brightly at just 3 volts and I was reluctant to take it any higher for fear of burning it out.

 

There are two other points of interest; a small tube attached to the side of the eyepiece is used for guiding instruments into the aural orifice, for scraping out wax and so on, and there’s a nipple on the top. This is for attaching a ‘puffer’ bulb, to send a short blast of air into the ear for checking the flexibility, or otherwise, of the patient's eardrum or 'tympanic membrane’. This model comes with a pair of interchangeable specula probes plus a spare bulb and the whole outfit is housed in a very smart velvet-lined carry case.   

 

What Happened To It?

This design has been in more or less constant production since the 1930s and hardyly anything seems to have changed since then. Modern Auriscopes, the sort that most GPs have, is little different to this one. The obvious exception is the materials used and this one is virtually all metal. There's heavy chrome plating on the eyepiece, specula and switch assembly, which maybe important for cleaning; the handle and battery cover are both aluminium. In contrast most of today’s models appear to be largely made of plastic; that’s no bad thing, as this makes them a good deal lighter and more robust. As for the manufacturer, three brothers founded Gowllands in the late 1800s and it is still in business. These days the company is headquartered in Germany but the UK division still makes a wide range of optical instruments specialising in getting up close and personal with ears, noses and throats. 

 

I found this one at a flea market a couple of years ago and although I had no immediate interest in or need of such an instrument, the asking price of £3.00 was too good to pass up. There are still plenty of them to be had should you feel the urge to own one  as well; they are not too expensive either and most will have been well looked after. There is usually one or two on ebay and at the time of writing, good ones were going for between £15 and £20. Since it is impossible to use one of these to look inside your own ears, and potentially dangerous to use on anyone else without proper training, it’s obviously never going to be used in anger again, but that doesn’t matter. The whole outfit is beautifully made, clearly built to last and were it not for the fact that batteries are probably no longer available it might even have had a few practical uses; who knows when you will next need to inspect tiny things inside small holes…?

0613


GIZMO GUIDE

First seen                      1935?

Original Price                £?

Value Today                  £10

Features                        Variable brightness, interchangeable probes/specula, instrument guide, pneumatic coupling

Power req.                    unknown?

Dimensions:                  190 x 65 x 25 mm                 

Weight:                         128g

Made in:                        England

Hen's Teeth (10 rarest):  5


VideoPlus+ VIP-181 Remote, 1990

It is easy to forget how difficult life used to be before we had our Sky+, Tivo and DVR boxes. Back in the bad old days – from the late seventies to the early noughties -- if you wanted to record a TV program while you were out, or watching something else, you had to grapple with a terrifying contrivance called a video cassette recorder.

 

These were hefty boxes, full of whirring wheels and erratic electronics. On a good day, with the wind in the right direction, you might get lucky and it didn’t chew your tapes, but even if it did work the resulting picture on your TV would be fuzzy, noisy and jittery. However, the real nightmare was a facility called the program timer that would, in theory at least, instruct a VCR to automatically record a TV program at a particular time and date.

 

Even now the words VCR timer sends a shiver through my bones. Over the years I must have attended dozens of press demos of new and allegedly improved VCR timer systems. As VCRs evolved into commodity items, with fewer distinguishing features, developing a better, and easier to use timer became an obsession with the major manufacturers. More often than not the result was a system that was more fiendishly difficult to operate and less reliable than what went before, or relied heavily on third-party support from broadcasters and printed media that either never materialised or quickly faded away.

 

Who can forget Panasonic’s infamous barcode system, which depended on newspapers and magazines printing barcodes next to TV listings? Then there was quirky Teletext Programming and Philips even tried their luck with a voice programmable timer. To be fair one system was very successful and stayed the course, and that was VideoPlus+, later teamed up with PDC or Program Delivery Control*, to make VCR timer programming, almost, but never quite foolproof.

 

VideoPlus+ was developed in the late 80s in US by Gemstar (later to become Macrovision), and marketed around the world under a variety of names, including G-Code, ShowView and VCR Plus+. It’s ingeniously simple; each TV programme is assigned a unique number, or Pluscode, printed alongside its listing in newspapers and magazines. The code is generated by a computer algorithmn, and when decoded yields three vital pieces of data, namely the date, time and channel on which a program will be broadcast. To make it even more user friendly, the algorithm made Pluscodes shorter for popular programmes, serials and those shown at peak times. To program a VCR all you had to do was press the VideoPlus+ button on your VCR remote, tap in the Pluscode and with a bit of luck your programme would be recorded, which it usually was, barring fumbled entries, misprints and late schedule changes.

 

The really interesting thing about VideoPlus+, though, is how quickly it took off. It was launched in 1990 and within the space of only three or so years it became a near-standard fitment on almost all new VCRs. This was quite a feat when you think about it, especially in the early days. Gemstar were faced with a classic chicken and egg situation, persuading newspapers and magazines to print Pluscodes that hardly anyone one could use, because at launch only a tiny handful of VCRs had the feature. Their solution was elegantly simple, and finally, where this gadget comes in.

 

It’s the VIP-181, a programmable remote control, designed to give almost any VCR a VideoPlus+ timer facility, and to enable timeshift programming from satellite receivers. To use it all you have to do is set the appropriate manufacturer’s code for your particular VCR and, if you have one, satellite tuner. Set the time and date and it’s ready to use. Just enter the Pluscode and leave the handset pointing at your VCR. At the appointed time the handset sends the necessary commands to the VCR, to switch it on, start recording, and then switch it off when the programme has finished. There’s also an option to extend recording times, in increments of 15 minutes, to take account of schedule changes. It also has a test mode, to make sure the handset is aiming in the right direction. If you wanted to record a satellite TV programme the handset would instruct the VCR to record from its external AV input, the only proviso was that the satellite tuner had to be left on and tuned to the channel that you wanted to record.

 

What Happened To It?

VideoPlus+ or ShowView had already been launched with modest success in the US in 1990 and Gemstar’s cunning plan to introduce it in the UK was to print Pluscodes in newspapers and magazines by sponsoring TV listings and to give out handsets to journalists, which is how I came by this one.

 

The well-coordinated campaign worked and there were many favourable reviews in the technical and consumer press, but once the bandwagon was rolling Gemstar switched its attention away from hardware to licensing the listings algorithm and the technology to VCR manufacturers. The VIP-181 was actually quite expensive, at launch it was priced at just under £50.00, so I doubt that many were sold, but the seeds had been sewn and soon everyone came to rely upon VideoPlus+.

 

Pluscodes continued to be printed alongside some TV listings into the early noughties but by around 2005, the combination of the decline of the VCR market and rise of hard disc based digital video recorders, with easy to use and vastly more flexible electronic programme guides (EPGs), marked the demise of VideoPlus+.   

 

I have no idea how many VideoPlus+ remotes there are still out there; probably not that many but I wouldn’t get too excited if you have one. It’s practically useless, and not even that interesting to look at so for the moment, at least, it has little or no value to anyone except perhaps a handful of nerdy gadgets collectors, like myself. Nevertheless, it deserves to be remembered as a quirky and unusually successful attempt to tame one of the late twentieth century’s scariest technological terrors (you really had to be there…).

0413

 

*PDC relied upon broadcasters transmitting a ‘flag’ – embedded in the TV signal – to signify when a program was going to start early, overrun or switch to another channel and automatically correct timer settings on suitably equipped VCRs.


GIZMO GUIDE

First seen                      1990

Original Price                £50

Value Today                  £5

Features                        Multi-brand programmable VCR and Satellite tuner remote for controlling power on and recording functions, Daily, Weekly and Once-only recording, Add Time function (15 minute intervals) Test Recording, manual timer programming

Power req.                     4 x AAA cells

Dimensions:                   168 x 64 x 20mm

Weight:                          114g

Made in:                        China

Hen's Teeth (10 rarest):  5


GEC Voltmeter, 1960?

Unfortunately the only reference I can find to this very substantial volt meter is a picture of a near identical amp meter (ammeter) made by the Australian General Electric Company. I have a strong suspicion that this is British made as GEC were a UK based company, and it would make more sense to manufacture weighty items like this close to its intended market. All in all it’s a bit of a mystery, I don’t know how old it is and I have no idea where it came from, before I stumbled across it at a car boot sale in a muddy field in Sussex, so perhaps it’s easier to say what I do know. It is a high quality voltmeter and an enormous one at that, calibrated 0 to 80 volts. The only visible markings are on the dial, which identifies it as a ‘Type GC’ and it is ‘No 41711’. The case is made of solid cast iron, it weighs the best part of 3kg and looks as though it belongs on a large piece of industrial equipment.

 

It has the look and feel of a post WW2 product but I have to admit that the date of 1960 is probably a very poor guess and based entirely on the plastic window. I have a nagging suspicion it was originally glass and this is a modern replacement so it may well be much older, judging by the design of the very elaborate meter movement and cotton covered wired used on the meter coil.

 

I am hopeful that someone will fill me in on the details but in the meantime there are a few more things I can say with some certainty. The meter movement is a heavy duty moving iron type. Basically a small piece of iron is mounted on the meter’s armature, which moves the needle, and this is housed inside a large coil. There are two more points of interest, there is no return spring for the needle, instead it relies on the weight of the piece of iron, and gravity to return it to its zero position; this may be a fail-safe feature or an anti-vibration measure. The other oddity is the round tube, just below the dial card, which is an air damper. You may not be able to see it from the photograph but a small piston attached to the dial armature fits snugly inside the tube. Air resistance slows the movement of the needle and stops it dancing around if there is any fluctuation in the voltage it is measuring. The 80-volt range is a bit of a mystery, to me at least. I found a few vague references to 80 volt supplies in relation to marine and road haulage applications but again if anyone can point me in the direction of a class of equipment or application where this voltage range is relevant, please let me know.

 

As I mentioned earlier I found it at a car boot sale, it costs me 50 pence and the seller seemed pleased to be rid of it. My initial inspection showed that the meter needle was free and moved and apart from the tatty exterior paint finish it seemed to be in pretty good shape but even if it hadn’t it would probably be worth several times the asking price as scrap metal alone. After opening it up, aside from a little discolouration of the dial, the movement turned out to be in excellent condition. I stripped off the old paint and applied a few coats of Halford’s finest automotive black and it looks like it just came out of the factory.

 

What Happened To It?

Whilst I can’t be sure about its precise application it was obviously designed to reliably and continuously monitor voltage on an important piece of equipment. Failure was clearly not an option, it’s virtually indestructible and nothing short of a sledgehammer attack is likely to stop it working. Nowadays critical monitoring instruments are more likely to be digitally based and alarmed, to warn of failure or if the reading falls outside a desired range. This old meter still works, though I haven’t been able to think of a practical use for it, and until I can find a wall capable of bearing its weight it will just have to earn its keep as a very heavy paperweight. 

0113


First seen                      1960?

Original Price                £?

Value Today                  £10?

Features                        Heavy-duty, industrial volt meter, 0 – 80 volt range, high quality, air-damped moving magnet meter, cast iron case 

Weight:                          2.9kg

Power req.                     n/a

Dimensions:                   200 x 85mm

Made in:                        Great Britain?

Hen's Teeth (10 rarest):  4


Euromarine Radiofix Mk 5 Radio Direction Finder, 1980

It’s good to know that if I get lost at sea, and remembered to pack my recently acquired Euromarine Radiofix Mk 5 hand-held radio direction finder (RDF), I would stand a fair to middling chance of being able to listen to the latest episode of the Archers… It’s also possible that I could use it to navigate my way to Droitwich in Worcestershire, where the BBC Radio 4 long wave transmitter is currently (2012) situated, though maybe not for much longer. They are down to their last few high-power valves; when they finally run out it will probably end up as an Internet radio station and we’ll all be a little poorer for it…

 

But back to the matter in hand and this nautical doohickey was, until a few years ago, one of the simplest, cheapest and most reliable ways of working out your position when you were out and about on the briny-deep. It’s basically a highly directional long-wave receiver, with a built in compass. The fact that it can pick up Radio 4 long wave is a bonus feature; it’s actually meant to get a fix on ‘non-directional’ radio navigation beacons or NDBs, that until fairly recently were dotted around the coastlines of much of Europe and the US.

 

The idea was elegantly simple. Navigation beacons, along with their frequency and Morse code ident signals are marked on charts, so all you have to do is set the frequency of a known nearby beacon, turn with the device until you get the get the strongest signal, then take a bearing through the built-in compass on the top. This gives you a line to the beacon on your chart; you can now use simple triangulation to find out your position along that line by taking another bearing on another beacon, and where the lines intersect is more or less where you are.

 

Inside the case there’s a fairly ordinary 4-transistor AM superhet receiver that tunes between 180 and 450kHz. The key feature, and what makes it so directional is a long ferrite rod antenna that runs the length of the device. This picks up the strongest signal when it lined up with the transmitter, and since it works both ways, the compass tells you if you are pointing at or away from the beacon. There are just two controls, a tuning knob on the top and volume on/off knob on the back; this sits next to a 3.5mm headphone jack, for listening to the beacon or station. The liquid filled compass is, or rather was, a high quality item. The fluid in my one is discoloured, a fairly dark green, which makes it rather difficult to see the markings. By the way, the knobbly bit on top of the compass is a small prism giving a right-angle view of the dial. I suspect this is so you can see the compass and at the same time line up the direction finder with a visible coastal feature for a more precise bearing.

 

It’s sturdily built and appears to be well protected against the elements. Power for the radio comes from a pair of AA cells, housed in a holder inside the handle. There’s also a wrist strap, presumably so you won’t lose it when it gets a bit rough.   

 

I found this Radiofix gathering dust in the corner of a second hand shop in a small Hampshire market town. It definitely winked at me and with a price tag of just £5.00 I just couldn’t resist. The shop owner didn’t know what it was, or if it worked but for that sort of money it was worth a punt. As it turned out it was a runner and all that it needed was a bit of work on the tuning knob shaft, which was cracked.  

 

What Happened To It?

As far as I can make out it was made in the early 1980s, and that’s borne out by the electronic components, circuit design, materials and general construction. I haven’t been able to find out much, if anything, about it or the Euromarine company*. My guess is they are no longer in business; there are dozens of companies with the same or a very similar name but I have found no evidence that any of them are connected to the Radiofix. I doubt that this particular Euromarine was around for very long and I suspect that if they managed to survive into the late 80s or early 90s their fortunes would have taken a rapid nosedive as more accurate GPS systems became affordable and quickly took over the navigation market.

 

Apart from listening to BBC Radio 4 long wave -- while they’re still on the air -- it’s pretty much useless as the marine navigation beacons have mostly been shut down or re-deployed. There’s probably not very many hand-held RDF units around these days; the marine electronics market is quite small and specialised kit, although often eye-wateringly expensive, has relatively little value once it is obsolete. Apart from a few enthusiasts I doubt that it is interesting enough to become a serious collectable or especially valuable, at least not for another 100 or so years…

0912

 

*My thanks to Roger Wheatley for some background on Euromarine. He worked on the Knebworth estate, where the company was based, and says he cannot remember them being there after 1978, and that the firm was finally wound up in 1993.


GIZMO GUIDE

First seen                        1980

Original Price                  £50.00?

Value Today                    £10.00

Features                          directional long-wave superhetrodyne receiver, 180 – 450kHz, liquid filled compass with prismatic viewer, volume on/off, tuning, 3.5mm headphone jack, wrist lanyard

Power req.                      2 x AA cell

Weight:                           380g

Dimensions:                    165 x 135 x 85mm

Made in:                          England

Hen's Teeth (10 rarest):    8


Brydex Exide & Ever Ready U14 Gas Lighter, 1963

I had one of those classic cartoon double take moments when I saw this odd looking object on a stall at a car boot sale in Sussex. The sight of this Brydex gas lighter with its enormous Ever Ready U14 battery transported me back to the 1960s and my old Gran’s kitchen, where one of these gave me my first experiences of the delights, and hazards, of mixing electricity and highly combustible gas.

 

The problem in describing this widget is to decide whether it’s a battery, with an electric lighter attached, or a lighter, with an enormous battery. The Ever Ready U14 battery is clearly the most obvious feature. It’s a single cell, putting out just 1.5 volts and when new, probably capable of delivering the best part of 3 – 4 amps. Now it is sadly long discontinued, but they certainly knew how to make them and even though it’s probably more than 30 years old, there’s still 1.5 volts at the terminal, though the current is now just a few milliamps, and far too feeble to power the lighter.

 

Speaking of which, this part is badged Brydex and it says underneath, ‘by Exide’, another battery company, and like Ever Ready, still going strong. I suspect that when new it was sold with Exide’s own version of the U14, though I haven’t been able to find any record of it.

 

It’s a very simple design; the base of the lighter screws on to the top of the battery. There’s only one control, a small black push button switch and this connects the power to the element, housed inside the removeable protective shroud on the end of the long stalk. Needless to say this is supposed to keep the user’s hands well clear of the flame, when it lights. Well, that’s the theory; my youthful and rash experiments with igniting volumes of town gas in confined spaces suggested otherwise…

 

The element is a tiny coil of resistance wire, it glows brightly when the button is pressed, and remarkably it is still intact. Although the U14 battery no longer has enough juice, a modern D cell does the job, though not for very long, as the element is practically a dead short. There’s little or nothing to go wrong but it’s a little bit like the 50-year old broom, where the handle and brush have only been replaced a few times. The only original part is the lighter section; it’s probably been through numerous batteries and several elements in its time as the latter inevitably burns out with prolonged use. 

 

What happened to it?

Sales of specialist gas lighters like this one, not to mention boxes of extra long matches, almost certainly plummeted in the 70s with the introduction of built-in piezo spark and electric ignition systems on gas cookers and heaters. Incidentally, at around the same time the UK switched from Town or coal gas to natural gas from the North Sea, though I don't think the two events are necessarily connected. The redundant U14 battery probably disappeared at around the same time though I can’t be sure and, unusually, I can find no reference to it ever having existed anywhere on the web. As always I would be interested to hear from anyone who can flesh out my guesswork and speculation with some dates and facts.  

 

Sad to say this one is in only fair condition. There’s some corrosion around the base of the battery, probably from where it has stood on damp surfaces rather than leakage from the cell and the chrome plating on the lighter section has seen better days, so the £1.00 I paid for it probably wasn’t far off the mark. In good condition I reckon it could be worth as much as £10.00, say, but as with all ephemera its value, like beauty, lies in the eyes of the beholder. If you remember it first time around it’s worth something, otherwise it’s a just piece of tatty kitchen junk…  

0912


GIZMO GUIDE

First seen:                       1963?

Original Price                  £1.50?

Value Today?                  £5.00

Features                          Electric gas lighter, on/off push button control, incandescent igniter element

Power req.                      1.5 volt U14 single cell

Weight:                           380g

Dimensions:                    50 x 294mm

Made in:                          England

Hen's Teeth (10 rarest):    8


Ferguson FHSC 1 Door Camera, 1988

Big Brother is everywhere and surveillance cameras watch our every move. We tend to think of this as a fairly recent phenomenon, and it’s true, in the last ten years there has been an exponential growth in the number of security cameras, but one way or another we’ve been under observation since the late 1960s. The two key developments were the Vidicon tube, developed in the late 50s, and the Charged Coupled Device or CCD solid-state image sensor, which appeared in the early1980s. The Vidicon, essentially a CRT (cathode ray tube) in reverse, was the first compact video imaging device, making surveillance cameras practically and economically viable. However, it was CCD that made surveillance cameras small, cheap, reliable, and eventually able to see in the dark.

 

Even with the huge reduction in the cost of security video cameras they have remained largely under the control of the state, local authorities, industry and larger retail businesses. This wasn’t for any complicated technical or legal reasons it simply wasn’t a consumer product. In any case, for surveillance camera to be of any use it either has to be constantly monitored or the output recorded. The big change began in the mid noughties with the appearance of low cost digital video recorders (DVRs), cameras with built-in motion sensing features and wireless, IP or network cameras that allow live images to be sent to and from anywhere in the world over the Internet, Now Big Brother has been joined by Little Brother and anyone, from ordinary householders, shopkeepers, holiday home owners and the world and his wife is watching and recording.

 

Whilst DVRs and the Internet kick-started the current boom in home and small business video surveillance modest attempts were being made as long ago as the late 1980s to sell the idea to security conscious consumers. One of the very first attempts to get security cameras into the home was the Ferguson FHSC1. It’s a door entry camera and the idea is it connects to an ordinary TV. When someone rings the bell the camera control unit automatically switches the TV to the video channel and displays the image, or it can be assigned its own broadcast channel using a built-in RF modulator. The CCD camera is a low-light monochrome type and it has a set of infra-red LEDs, which means it can effectively see in the dark, or at least, illuminate the face of anyone standing within a metre or two of the camera lens. The camera module is fitted with a microphone, so you can hear, as well as see what’s going on.

 

The really clever feature though, and one that many modern cameras haven’t caught up with yet, is known as ‘line power’. Basically this means that the camera’s power supply, the video and audio feeds, and the control signals, all travel down ordinary two-core ‘bell-wire’ cable. This makes installation incredibly simple, though it does mean it’s a two part-affair and it can only operate with its dedicated control unit, which houses the power supply and the circuitry necessary to untangle the AV and control signals.

 

Although badged Ferguson it’s actually made for them in Japan. I’m not sure who by, but at the time most CCD sensors were being made by Hitachi and Sony. Sony launched its own door-view camera shortly after this one; the design was quite different, and came with its own flat-screen monitor (flat CRT), so it probably wasn’t them. Hitachi is a possibility though it’s more likely to be one of the many less well-known companies making surveillance products. What I can say for certain is that it’s very well built. The camera is weather resistant and pretty much vandal-proof, with a tough alloy housing and thick transparent plastic window protecting the camera lens and IR LEDs. The same goes for the control unit, it’s a no-nonsense design with just a few simple controls and I can attest to its reliability. Until it was retired a couple of years ago it had been keeping watch on my front door, 24/7 for the best part of 15 years. It only started playing up in the last few months of use, with intermittent loss of signal, but until that point it had performed faultlessly.

 

This unit was a pre-production model originally supplied to me as a review sample, for an article on home security. Ferguson never asked for it back and a year or two afterwards I installed it over my front door. At first it was connected to a TV but later it came in handy as a video source for testing time-lapse VCRs and other security products, which I was reviewing for a surveillance trade magazine.

 

What Happened To It?

The home video security market has been a very slow burner and although there’s been no shortage of reasonably priced products over the years, it has taken a long time to catch on. Part of the problem was undoubtedly the lack of affordable recording equipment – an unwatched camera is next to useless – but I suspect a lot of people were put off by the apparent complexity of DIY installation. To be fair it normally was a bit of a palaver, but the Ferguson FHSC 1 sought to address this problem with its pre-packaged approach, two-wire connection system and compatibility with any TV. In that respect it succeeded and any competent handyperson could install it in an afternoon. But the problem of a lack of recording capability remained – home VCRs could only store a few hours worth of low-grade images -- and the fact that it was only useful when the user was sat in front of the TV. I don’t remember Ferguson putting much effort into marketing the FHSC 1 to consumers; it was also fairly expensive so I doubt that many were sold, which probably makes it quite rare. Its value is difficult to judge, aside from a few gadget freaks like me there’s little interest in old security devices, and to be honest they are not that exciting, but this one is a little bit of history and marked the beginning of some pretty radical changes in our society, personally freedom, privacy and so on and it’s not your imagination, you probably are being watched!

0812


GIZMO GUIDE

First seen:                        1988

Original Price                   £150

Value Today?                   £10?

Features                           Line-powered monochrome video camera, 500 lines resolution, IR illuminators. audio, door chime RF bypass, AV output

Power req.                        230v AC mains

Weight:                             camera: 400g, control: unit 1.3kg

Dimensions:                      camera: 44 x 65 x 55mm, control unit: 206 x 165 x 50mm

Made in:                           Japan

Hen's Teeth (10 rarest):     7


Nife Type NC10 Miner’s Hand Lamp, 1960?

At least I think it’s a miner’s hand lamp… The precise purpose and history of this device is a bit of a mystery. As ever, I am eager to hear from anyone who can fill in the blanks or put me right, though, I have been able to figure out a few things about this interesting looking object.

 

First the obvious, it’s a hand lamp, and almost certainly intended for mining, caving or potholing, judging by the rugged construction and similarity to other types of miner's etc., lamps. The detachable light, which appears to be made of Bakelite, has a simple polished aluminium reflector with a tough screw-on Perspex cover. All electrical connections are heavily sealed and shrouded, both to prevent moisture getting in and sparks escaping. Needless to say this is a major consideration underground, where explosively combustible gasses are an ever-present danger.

 

It uses two small 3-volt torch bulbs; a rotary control on the side switches on one or both bulbs. I’m reasonably sure variants with longer cables would have been made for use as helmet lamps. It is rechargeable; the bulk of the stainless steel body is a 2-cell battery. This has a couple of sturdy belt clips and it is detachable, for charging or exchange. Sadly it shows no signs of electrical activity and must be presumed dead. No expense seems to have been spared on materials and manufacture, which is, as you would expect on a piece of equipment that people’s lives could depend upon.

 

The first area of doubt is what type of battery it uses. I’m inclined towards it being a nickel-iron type (Ni-Fe) type. This tallies with the manufacturer, which is Nife of Redditch, a long-established producer of Ni-Fe batteries, though it also made nickel-cadmium (NiCad) and other types, so I can’t be absolutely certain. However, the electrical characteristics of Ni-Fe batteries are ideally suited to this type of application. They also have very long lives – apparently more than 40 years if looked after properly. They are rugged and can withstand prolonged periods of discharge; in fact the only downside seems to be that they are expensive to make and require a specialised charging system, which may explain why we don’t hear much about them these days. After a succession of downturns, takeovers and name changes, Nife went out of business in the late 90s (there’s a branch of B&Q on the site of the old factory…). The date I’ve put on it is pure guesswork but it looks very similar to other Nife lamps made in the fifties and sixties.

 

Now this is where it gets really vague and the trail goes cold. I haven’t been able to find any record of this particular model anywhere. There’s a serial number stamped on the top panel, with a military (WD) arrow. I have found references to Nife manufacturing equipment for what is now the Ministry of Defence, so it’s possible this model was produced for the armed forces, but why they would want them, and what they did with them is unlear, unless someone can enlighten me. 

 

Back now to the certainties, and I found this one at a car boot sale near Bournemouth. The stallholder didn’t know much about it either as it had come from a house clearance, and like me, had no idea of its value. We settled on £2.00 and everyone was happy. It was in a nasty looking state, though I could see that it was mostly caked-on grime. A short session with some heavy-duty detergents and the wire-brush attachment of my Dremel hand tool removed most of it. There was some light corrosion on the electrical contacts in the lamp module and around the battery terminals but they cleaned up okay. Overall it is in pretty good shape and with a bit more work and some modern rechargeable cells there’s no reason why it couldn’t be bought back to life.

 

What Happened To It

Whilst attempting to research this lamp’s origins I became something of an armchair expert on mining and caving lamps. It seems that comparatively little has changed over the last 50 or so years, which isn’t really surprising. It’s a tried and tested design and hard to see how it could be improved. Of course there are differences on modern lamps; lighter plastics have largely replaced metal on most of the components, nicad is the most widely used battery technology, and torch bulbs have been superseded by brighter, more efficient and reliable LEDs but the shape, layout and removable lamp would be instantly recognisable to generations of underground workers.

 

Miners lamps are not exactly rare, though the overwhelming majority of the classic ‘Davy Lamps’ are modern repros and haven’t been anywhere near a mine shaft. As far as I can see more recent battery powered lamps like this one are not that common. I suspect that thousands of them found their way onto the market following the coalmine closures in the 70s and 80s but they don’t seem to come up very often on ebay. They’re not very practical, and if you find one that still works you will also need a specialised charger. They’re also not much use as torches, above ground, at least. The light output from a couple of small bulbs is pretty feeble, though I guess it’s not a problem in total darkness when your eyes have adjusted. It’s definitely unusual and potentially collectible but in its natural state it scores highest as a novelty doorstop.

0812


GIZMO GUIDE

First seen:                      1960?

Original Price                 £100?

Value Today?                 £10?

Features                         2 x 3v volt torch bulbs, rotary switch (on/off, high/low), detachable lamp module. Waterproofed cable & electrics

Power req.                     3-volt nickel-iron (Ni-Fe) rechargeable battery pack

Weight:                          2.2kg

Dimensions:                   290 x 190 x 80mm

Made in:                         UK

Hen's Teeth (10 rarest):   5


Casio VL-1 VL-Tone Keyboard, 1979

Old gadgets can be an acquired taste. It’s different if you owned, lusted after or just remember seeing a particular widget when it first appeared, but later, more tech-savvy generations can sometimes find them a bit baffling, or wonder what all the fuss is about (they’ll learn, and be sorry they threw away all of their i-toys…).

 

Anyway, that’s definitely not the case with the Casio VL Tone. Plonk this cute little pocket keyboard it in front of almost anyone, of any age, and it brings a smile to their face and keeps them amused for ages; well, anything from 10 minutes to a couple of hours, depending on their age, boredom threshold and musical sensibilities…

 

The VL-Tone works on so many levels. Essentially it is a toy, but it has a properly laid out, two and a half octave keyboard so a practised musician can just about tap out a simple tune on it. It has featured in numerous pop records (see below)  from the 80s and re-discovered on a fairly regular basis by retro-kitsch bands ever since. Indeed, it continues the honourable tradition of cheap electronic musical instruments featuring in pop records, started by Rolf Harris and the classic Stylophone, over a decade earlier. There’s a built-in 99-note sequencer, so you can compose and playback tunes using one of the six rather optimistically named ‘voices’, none of which sound anything like the instruments they’re named after. It has ten drum rhythms, three selectable octaves, one pre-stored tune, and most bizarre of all, a built in 8-digit calculator. I would loved to have been a fly on the wall at the meeting when someone came up with that truly bonkers idea… 

 

It’s polyphonic, so you can only play one note at a time. All of the voices are derived from a square wave oscillator, and these are further tweaked by a low-frequency oscillator to produce tremolo and vibrato effects, and an ADSR (attack decay sustain reverb) envelope filter to shape the notes.  The notes are numbered and displayed on the LCD, which doubles up as the calculator display. Technically and musically speaking it is fairly crude, even by the electronic musical instrument standards of the day, but its unfair to judge it too harshly as it only cost around £40.00. By the way, if you want to find out what it sounds like and try all the voices and rhythms on a life-like simulator then I recommend the free VL-Tone Emulator, for Windows PCs..     

 

Part of its attraction was the small size. It slips easily into a coat or trouser pocket, but in spite of that the built-in 60cm speaker is surprisingly loud. If you needed more volume there’s a line audio jack for connection to an external amplifier or recording equipment. Build quality is up to Casio’s usual high standard. Their considerable experience in the calculator business shows through as well, with light and responsive keys and switches.

 

This one came from ebay and cost around £5.00, plus postage; they generally sell for quite a lot more, especially if they are in good condition with all of the extras but this one was advertised as non-working, and came without its carry case or instructions. The cosmetic condition was good and if nothing else it would be useful for spares so I took a chance. The fault turned out to be a simple one, just a missing battery contact. I found a near-enough replacement in the bits box and it sprang back into life. Some of the digits on the LCD were missing or dim but again it was an easy fix and all that was needed was a gentle realignment of the display and its connector cable. 

 

What Happened To It?

Thanks to a rash of digital synthesizer chips appearing in the late 70s and early 80s electronic keyboards were coming out of the woodwork. Most of them had full-size, or near full-size polyphonic keyboards, with prices to match. The VL-Tone was something of a novelty, attractively priced, somewhere between a toy and a semi-serious musical instrument, with that mad calculator function thrown in. It was a more or less immediate hit;  Casio realised it was on to a winner and produced several updated models in quick succession. However, it was a relatively short-lived fad and those who bought it to play music rapidly discovered its many limitations and either moved on to something bigger and better or simply tired of it. Quite a lot have survived, it seems, many in excellent or little used condition. Prices vary widely but a mint, boxed example can easily go for £100 or more on ebay. Average to good working examples regularly sell for between £30 and £50, and I’ve spotted them at car boot sales for a fiver, so stay alert and always carry a fresh set of AA cells with you.

0812

 

Notable users include: Apollo 440, Beastie Boys, Bill Nelson, Cars, Dee-Lite, Devo, Human League Talking Heads, Stevie Wonder, Sting, Trio, Vince Clarke, White Town


GIZMO GUIDE

First seen:                          1980

Original Price                     £40.00

Value Today?                    £25.00

Features                            29-key, two and a half octave monophonic keyboard, 6 voices (piano, fantasy, violin, flue, guitar, ADSR), 10 rhythms (march, waltz, 4-beat, swing, rock-1, rock-2, bossanova, samba, rhumba, beguine), 99-note sequencer/recording, one-key play, variable tempo, built-in tune, 8-digit. LCD display calculator

Power req.                        4 x AA cells

Weight:                             320g

Dimensions:                      300 x 75 x 28mm

Made in:                           Japan

Hen's Teeth (10 rarest):     5


Vivalith II Model 301 Heart Pacemaker, 1984

If you’ve got one of these you’ve probably never seen it and are lucky to be alive or, like me, just enjoy collecting weird and wacky stuff. It’s a heart pacemaker or to give it its proper name, an implantable cardiac pulse-generator. It’s for keeping dicky hearts ticking and the basic idea is quite simple. Circuitry inside the case monitors the electrical activity of the heart and when it senses that it’s not beating regularly it delivers a small electric shock to the muscle surrounding the heart to restore the correct rhythm.

 

Clearly it’s a tad more complicated than that and over the years an incredible amount of research and technology has gone into the development of these devices. The obvious problems are that it has to be self-contained, maintenance-free, ultra-reliable and able to function inside the human body for several years. Obviously it wouldn’t be very convenient if it had to be removed every few weeks to pop in a couple of AA batteries. Our bodies also have a natural dislike of things that do not belong and does its best to get rid of them, so it has to be made of materials that do not trigger the immune system.

 

The Vivalith II shown here came into my possession in 1983, along with an assortment of medical artefacts and gruesome looking implants, whilst I was researching a feature on technology in medicine. There is suprisingly little technical information on this and other types of pacemaker on the web, and it’s one of the few gadgets that I haven’t tried to take apart. The reason for that is simple; to do so would almost certainly result in its destruction. For obvious reasons it’s designed to be impervious to bodily fluids. The metal case is probably made of Titanium, and the connector for the electrode and the electronics are ‘potted’ in what looks like a silicone material. It’s really dense and as far as I can see there’s no way of getting it out without damaging the contents. Judging by the weight and what I can see through the silicone gel there’s something inside and it appears to be the genuine article, though there is a warning label on the back saying that it  ‘not for human use’ so it was probably meant for demonstration or training purposes.

 

What I have been able to determine is that it’s a unipolar type pacemaker, which seems to mean that it uses a single wire electrode to both carry the electric shock and monitor heart activity. The battery, if it has one, will have expired a long time ago though one source suggests that when new it had an 8 – 10 year operating life. It would normally be implanted into the patient’s shoulder area; apparently it’s a fairly routine procedure and the placing of the wire electrode running from the device to the heart is accomplished through keyhole surgery.

 

I cannot be sure where it was made, it’s labelled Coats Pacesetter, based in Glasgow, but it seems that they were taken over by a US company called St Jude Medical some time in the late 80s and that’s more or less where the trail runs cold. I would be interested to learn more, including what’s inside and what makes it tick, so if anyone can enlighten me, please get in touch.

 

What Happened To It?

It turns out that heart pacemakers have been around for a surprisingly long time and experiments with wiring the heart up to electrical devices goes way back, to the 1920s. The first pacemaker to be implanted in a human was in Sweden in 1958. Early models suffered from short operating lives of just a few weeks or months. The batteries of the day simply weren't up to such a demanding job.

 

It looked as though the power problem had been solved in the late 1960s with the development of nuclear batteries. These would have lasted several decades and probably outlived the patients. They used small amounts of the isotope Plutonium 238. This generates heat, which is converted into electricity by a device called a thermocouple.

 

Sadly they never caught on, despite considerable efforts being put into containing and protecting the device and its highly toxic contents against leakage and even damage caused by gunshots, fire and so on. There were regulatory concerns and even a suggestion that if enough of them could be obtained they could be used for terrorist purposes. In the end, though, they were made redundant by cheaper and less contentious Lithium Iodide batteries, with operational lives of 10 years or more. More recently pacemakers with cordless rechargeable batteries have been developed, using what I suspect is an electromagnetic induction system, similar to ‘wireless’ mobile phone chargers. Many modern pacemakers also feature two-way wireless data communications for remote programming, monitoring, diagnostics and so on.

 

So what is this one worth? The simple answer is that I have absolutely idea though I am fairly sure that they were, and probably still are horribly expensive to make, thanks to the exotic materials and rigorous manufacturing standards.

 

Not surprisingly there doesn’t seem to be much of a collector’s market for this sort of thing and I have yet to see one on ebay, though admittedly I don't spend too much time looking... They are, after all, quite difficult to get hold of -- in fact you really don't want to have one for its intended purpose -- and my guess is that most of them end up being buried or incinerated, along with their owners…

0612


GIZMO GUIDE

First seen:                         1983

Original Price                    Lots…

Value Today?                    Who knows

Features:                           Cardiac pacemaker, unipolar type

Power req.                        ?

Weight:                              47g

Dimensions:                       47 x 53 x 9mm

Made in:                             UK

Hen's Teeth (10 rarest):      9


Sekiden SAP 50 Automatic, 1965?

We’re straying a

little from the usual topic of electrical and electronic gadgets, but it’s a worthwhile diversion and may ring a bell, or a ‘ptang’ – more in a moment -- with boys, and possibly a few girls, who grew up in the 60s and 70s.

 

It’s a Sekiden Gun, otherwise known as an SAP 50 Automatic 100 shot repeater. Back in the 60s virtually every sub-teen kid had a gun, or rather guns. It simply wasn’t an issue for most parents or society in general, just a normal part of growing up in an era swamped with gun-toting cowboys and Indians, villains and secret agents on the small and large screens. Mostly we had cap pistols and spud guns (they fired small chunks of potato); a few lucky kids had access to their older brother’s air pistol of rifle but for the most part toy guns were pretty tame and mostly harmless, then along came the Sekiden, which, to a youngster looked and worked like a proper gun.

 

They were made of plastic and cost a modest three shillings and sixpence or around 17.5 pence, but the low price was just to get you hooked. They fired purpose-made ammunition, small silver or gold coloured balls around 7mm in diameter, made of plaster, so they were light, and very hard, A box of 50 balls cost 3d (threepence) or just over 1p, which doesn’t sound too bad, except that the gun’s hopper held 100 balls, and a quick trigger finger could empty the gun in less than a minute, and exhaust their pocket in a half a morning. Being made of plaster the balls would disintegrate if they hit a hard surface, or quickly turn to mush if they came into contact with water, so recycling ammo was difficult. Fortunately there was an alternative. Dried peas fitted the gun’s loading system and barrel almost perfectly and a bag of several hundred cost just a few pennies at the local grocer. Suffice it to say there were a lot of pea plants growing in back gardens, fields and forests in the 60s and 70s…

 

The gun’s design appears to be loosely based on the classic James Bond Walther PPK, except that the barrel is fake. It’s part of the ammo hopper, and once loaded the balls are prevented from falling out by a sliding cover. The balls come flying out of a hole beneath the real barrel. They’re propelled by a spring that’s compressed and released when you pull the trigger, producing the unforgettable ‘ptang’ sound. The balls travelled at a fair old rate too. In it’s off the shelf condition it wasn’t enough to do any real damage, but getting hit on exposed flesh would sting and you certainly wouldn’t want to catch one in the eye; that really did hurt! The cardboard ammo boxes (above) tried to bolster the message that they were harmless with a rather sinister picture of a dad shooting a youngster in the face. They’re both grinning, so it must have been safe. If they had known that  enterprising kids, handy with a screwdriver, were supercharging their guns by stretching the spring.would have wiped the smiles off their faces...

 

What Happened To It?

Most Sekiden guns probably had fairly short lives. They were not very well made, and frequently jammed, so the temptation was to poke a stick down the barrel or take it apart. Either way it generally ended up in the bin soon afterwards. I have no idea how long they were in production but I suspect the end came as a result of injury or safety concerns and they were probably withdrawn, possibly in the mid-1970s, but as always I’m open to informed answers.

 

This one came from good old ebay, about 10 years ago and it was a chance purchase. I had completely forgotten all about my own childhood associations with it and stumbled on one quite by accident whilst trawling for something else. It came with a couple of boxes of ammunition balls, which were as-new and unopened. I can’t remember how much I paid but it would have been less than £5.00. No-one else bid on it so it may have been wrongly categorised or described. It had obviously been used but the action was as good as new and I quickly got through half a kilo of dried peas, the original ball ammo being far too rare and precious to actually use. It’s not something I normally look for on ebay but on the few occasions I’ve checked there haven’t been any but I wouldn’t mind betting there’s still a few out there looking for a good home, so keep watching.

0512 


GIZMO GUIDE

First seen:                        1965?

Original Price                   3/6 (around £0.17.5)

Value Today?                   £10?

Features:                          Plastic replica Walther PPK, spring action, 100-shot capacity, 7mm silver coated plaster ball ammunition (3d for 50)

Power req.                       n/a

Weight:                             45g

Dimensions:                     135 x 100 x 23mm

Made in:                           Japan

Hen's Teeth (10 rarest):     8


Accoson Mercury Sphygmomanometer, 1960?

I am guessing that this rather scary looking object will be horribly familiar to anyone over the age of 40, possibly for all of the wrong reasons...

 

It’s commonly referred to as a blood pressure (BP) meter, but to give it its proper, and largely unpronounceable name, in the medical biz it's affectionately known as a Sphygmomanometer. If you want to be really pedantic it’s actually a Manual Mercury Sphygmomanometer, which helps to distinguish it from aneroid and modern battery powered digital types.

 

Blood pressure is a pretty good indicator of general health and more specifically the performance of the heart and circulatory system, but it is a surprisingly difficult thing to measure accurately. This particular type of blood pressure meter has to be used in conjunction with a stethoscope and it requires a fair amount of training to use properly. It’s all a bit of a palaver but widely regarded as the most reliable method. Many doctors keep one handy as digital types can give ambiguous results; the noises some of them make are enough to give you high blood pressure...

 

Briefly, the inflatable cuff is wrapped around the patient’s forearm, it’s then pressurised using the rubber bulb. As it tightens it stops or slows the flow of blood, and the mercury rises up in the vertical glass column. When the cuff is sufficiently tight the medic places a stereoscope over the brachial artery and slowly releases a valve to gradually release pressure in the cuff. The blood starts flowing again producing a distinctive whooshing sound that's heard in the stethoscope. The point at which this happens is known as the Systolic pressure and the reading on the mercury column, in millimetres of Mercury (mm/Hg) is noted down. As the pressure in the cuff is further released the whooshing sound stops, this is the Diastolic pressure, and once again the height indicated on the mercury column is noted. For the record the average Systolic/Diastolic reading is supposed to be 112/64. I wish...

 

This one is made by a company called Accoson and I’m putting the date at 1960. This is pure guesswork, based on the materials, shape and general design, but it could easily be 5 – 10 years either way; as usual if anyone knows better I’ll be very pleased to hear from you. It’s superbly well made, housed in what looks like a mahogany case, and it all folds up neatly to protect the parts when it is not being used, or moved around. Incidentally Accoson are still in business and making blood pressure instruments, indeed this family-run business been around since 1859 and made their first Sphygmomanometer in 1904.

 

I bought my Sphygmo etc., etc… a few years ago at an antiques fair and as far as I can remember I paid around £10.00 for it. Sadly some of the rubber parts have perished and it no longer works. By the way, this can be quite dangerous, Mercury is nasty stuff and highly toxic. Luckily on this model it is safely contained in a metal bottle and can’t get out, but it’s wise to be careful when handing these old instruments, and steer well clear of any that show signs of leakage.

 

What Happened To It?

As I mentioned earlier manual BP meters like this haven’t gone away and are still being made, though for obvious reasons the use of Mercury has been phased out and most modern instruments are of the aneroid (without liquid) type. However, these days you are more likely to see a digital BP meter when you visit the doctor, though the good news is there’s no need to wait to get the bad news. Home digital blood pressure monitors that fit around the wrist are widely available online and from pharmacies for a few pounds. Generally this is a good thing and the more interest people take in their own health the better, though I get the impression that the medical profession regard it as a mixed blessing as the ‘worried well’ fill their waiting rooms with self (or rather Internet) diagnosed illnesses… 

 

There’s quite a healthy (pun intended) market for vintage medical instruments, though I doubt that his one is old enough to qualify as a serious collectible. If it was in working order it might make £50 or so on ebay but even in its present sorry condition it’s still quite a conversation piece, and almost guaranteed to give men (and women) of a certain age mild palpitations.

0412


GIZMO GUIDE

First seen:                        1960?

Original Price                   £?

Value Today?                   £10?

Features:                          Hinged wooden case, 300mm column, chrome plated fittings

Power req.                        n/a

Weight:                             1.7kg

Dimensions:                      370 x 125 x 60 (case closed)

Made in:                            England

Hen's Teeth (10 rarest):     6


National Westminster 24-Hour Cashcard, 1971

Here’s an oddity that I found in a collection of old credit cards (I used to keep them for scraping ice from my windscreen in case you are wondering…). It is one of the earliest cash cards, used to obtain money from a hole-in-the-wall cash dispenser.

 

It turns out that the very first cash machine in the UK was installed by Barclay’s Bank in June 1967, at its Enfield branch. This one was issued to me by National Westminster Bank in the early 1970’s and by coincidence was also used in Enfield as I was working at Ferguson’s Southbury Road TV factory at the time.

 

First generation cash machines were just that. Unlike today’s ATMs (automated teller machines) it had just one simple function, which was to dish out money. You couldn’t access your account or check the balance, and as far as I recall you could only get £10.00, which popped out of the machine in a small plastic clip. It was handy if you ran out of money after the bank had closed but it was tough luck if you wanted any more; the card was swallowed by the machine and sent back to you a few days later in the post. (I seem to recall that favoured customers with healthy accounts – not me I hasten to add – could request multiple cards).

 

The plastic has perforations in what appears to be a 20 x 8 matrix, which clearly represents a unique code linked to the user’s bank account and you had to enter a code on the machine’s keypad to get at your dosh. At first glance it doesn’t seem like a particularly secure design. There are no obvious secondary security features, such as a magnetic strip that would defeat simple forgery attempts, but appearances can be deceptive.

 

I did a little research and it seems that there were several types of cash cards or ‘tokens’ of this type issued in the late sixties. Most of them had a magnetic coating onto which an ident or date stamp of some type could be recorded. More bizarrely, some cards were apparently impregnated with a low level radioactive material, or printed with radioactive ink that would verified or read by a radiation detector inside the machine.

 

My card appears to be of the magnetic variety, it is attracted to a strong magnet, but out of interest I checked it with my most sensitive radiation monitor and it was clean. My guess is any radioactive markers would have had fairly short half-lives and would have decayed significantly over the years. In any event I doubt that fraud was much of a problem. They were more innocent times and since it was limited to the one withdrawal it probably wasn’t a huge temptation for crooks.

 

What Happened To It?

The idea of an automated cash dispenser goes way back, possibly as far as the late 1930s, but credit for the first operational machine goes to a Japanese bank, in 1966, followed soon after by dispensers in Sweden and the Barclays machine in Enfield. NatWest dispensers were made by Chubb (other makers included De La Rue and Burroughs) but these early one-shot machines didn’t hang around for very long. By the early 1970s more sophisticated ATMs, developed by IBM and NCR were starting to appear in the US and UK. Not only could they dispense variable amounts of cash, they were networked to the banks main computers and the amounts withdrawn were immediately deducted from the users account.

 

I doubt that this card has anything more than curiosity value, I’m not aware of any cash-card collector’s clubs (though I’m constantly surprised by what people get up to in their spare time…) and it’s much too thin to be much use as an ice scraper. Nevertheless I suspect it may be quite rare. It’s not the sort of thing users would have hung on to and the machine swallowed them up each time, so when the time came for the machines to be replaced they wouldn’t have been re-issued. I will keep an eye out for them though, and I would very interested to know if any of the cards with radioactive markers have survived and can still be detected.

0312   


GIZMO GUIDE

First seen:                        1970

Original Price                   n/a

Value Today?                   £0.50?

Features:                          20 x 8 + 1 (8-bit?) perforated code matrix, magnetic coating, £10.00 limit

Power req.                        n/a

Weight:                             2g

Dimensions:                      82 x 53 x 0.26mm

Made in:                            UK

Hen's Teeth (10 rarest):      8


Sinclair Super IC-12 Amplifier, 1971

These weird looking objects represent another one of Sir Clive Sinclair’s adventures in microelectronics. They’re Super IC-12s, integrated circuit mono audio amplifiers, launched in 1971, with a claimed power output of 8 watts RMS. Whether or not any of them lasted long enough to achieve anything like that is open to debate. In fact the IC12 was Sinclair’s second chip-based amplifier, the first being the groundbreaking IC-10 from 1968. This was almost certainly one of the first IC audio amps available to the public. Unfortunately it had a dreadful reputation for reliability but in spite of that it lasted for a couple of years.

 

Sinclair didn’t actually manufacture these chips; the IC-10 was made by Plessey whilst the IC-12 was a more sophisticated product from US-based Texas Instruments, and I suspect one of its SN760 series chips, which were used in the audio output stages of TVs of the same era.

 

The wacky ‘hedgehog’ shape is all down to the finned aluminium heat sink mounted on top of the resin-encapsulated chip, and the reason it’s there is because it gets hot, really hot! Without the heat sink it would probably burn out in under a minute – which they tended to do anyway. To be fair modern microchips also get hot and hard-working ones like computer CPUs need a lot of elaborate cooling, but the IC-12 goes back to the early days of microchips, when heat generation was much more of a issue, and built-in protection and current limitation was a lot less refined. 

 

Back then selling microchips on their own was an odd thing to do. Those early chips were temperamental and fragile, both electrically and mechanically. Sinclair provided designs for circuits, but it invited experimentation and even experienced electronics enthusiasts had accidents so the failure rate was probably very high. To Sinclair’s credit there was a no-fuss guarantee and zapped IC-12s were usually promptly replaced, without question.

 

What Happened To It?

I can’t be sure how long the IC-12 lasted but it was probably no more than two or three years. The high casualty rate must have been a real problem for Sinclair, though it was rumoured that, like the transistors used in his early radios, these were factory rejects or out of spec items.  Nevertheless, the basic problem, then as now, was always going to be heat dissipation. ICs are not well suited to high current applications like power amplifiers and just can’t handle direct to speaker outputs of more than a few watts. By the early 70s the demand for cheaper and more powerful home Hi-Fis had outstripped the capabilities of microchips in the output stages of amplifiers in favour of better performing and more reliable power transistors.    

 

These two were sent to me as replacements after falling afoul of my cack-handed attempts at a home-brew amp. Looking back I suspect there may have been a short circuit somewhere and the use of ‘near-enough’ spares box components was just asking for trouble so they were probably doomed. However, I recall that even if you got everything right they tended to lead rather short lives. I clearly lost interest in getting them to work because they ended up in a box of old ICs and components that I came upon recently in my loft.

 

I have no idea what they are worth; they do turn up on ebay every so often but they either remain unsold or go for just a few pounds, not much more than the original selling price of £2.98. Being the first of its kind the IC-10 might be worth a few bob, as would be an IC-12 in its original packaging However, the problem with these, and most vintage chips is that they are nondescript and pretty much useless on their own. There’s no easy way of telling if they have popped and there are very few products that used them, so there’s no replacement or spares market to speak of. It’s probably not a collectable, at least not in the foreseeable and unlikely ever to gain much in value but I’m hanging on to mine just for that weird and wonderful shape.

0212  


GIZMO GUIDE

First seen:                        1971

Original Price                   £2.98

Value Today?                   £5.00

Features:                          8 watts RMS monolithic integrated circuit amplifier, 5Hz – 100kHz frequency range, 1% THD, 3 – 15 ohm impedance, 90dB gain, 8mA quiescent current (28 volts)