Dusty Navigation



Crystal Radios

Transistor Radios

Mini Tape Recorders


Sinclair TVs


Tape Recorder Gallery

A - C    D- M     N - Z


Gizmos by Category

Sinclair Stuff

Cameras & Optical

Clocks Watches Calcs

Computers & Games

Geiger Counters & Atomic Stuff

Miscellaneous & Oddities

Phones & Comms

Radio & Audio

Tape Recorders & Players

Test & Scientific Instruments

TV & Video


Psst...looking for cheap 

nuclear stuff?

Gizmos A - Z

Accoson Sphygmomanometer

Acoustic Coupler

Advance PP5 Stabilised PSU

Aibo ERS-111 Robotic Pet

Aiwa LX-110 Linear Turntable

Aiwa TP-32A Tape Recorder

Alcatel Minitel 1 Videotex

Aldis Folding Slide Viewer

Alpha-Tek Pocket Radio

Airlite 71 Aviation Headset

AKG K290 Surround 'Phones

Amerex Alpha One Spycorder

Amstrad NC100 Notepad

AN/PRC-6 Walkie Talkie

Astatic D-104 Desk Microphone

Apple Macintosh SE FDHD

Avia Electronic Watch

Aitron Wrist Radio

Aiwa TP-60R Tape Recorder

Amstrad CPC 464 Computer

AlphaTantel Prestel

Atari 2600 Video Game

Atari 600XL Home Computer

Audiotronic LSH 80 'Phones

AVO Multiminor

AVO Model 8 Multimeter

Bambino Challenger Radio

Bandai Solar LCD Game

Baygen Freeplay Lantern

Bellwood, Bond Spycorder

Benkson 79 Mini Tape Recorder

Betacom BF1 Pianotel Phone

Binatone Digivox Alarm

Binatone Long Ranger 6 CB

Binatone Mk6 Video Game

Bio Activity Translator

Biri-1 Radiation Monitor

Bowmar LED Digital Watch

Boots CRTV-50 TV,Tape, Radio

Brydex Ever Ready Lighter

BSB Squarial

BT Genie Phone

BT Rhapsody Leather Phone

Cambridge Z88 Computer

Candlestick Telephone

Canon Ion RC-260 Camera

Cartex TX-160 Multiband Radio

Casio VL-Tone Keyboard

CD V-700 Geiger Counter

CD V-715 Survey Meter

CDV-717 Survey Meter

CD V-742 Pen Dosimeter

Channel Master 6546

Chinon 722-P Super 8 Cine

Citizen Soundwich Radio Watch

Citizen ST555 Pocket TV

Clairtone Mini Hi Fi Radio

CocaCola Keychain Camera

Coke Bottle AM Radio

Commodore 64 Home PC

Commodore PET 2001-N

Computer Novelty AM/FM Radio

Compact Marine SX-25

Concord F20 Sound Camera

Coomber 2241-7 CD Cassette

Craig 212 Tape Recorder

Craig TR-408 tape recorder

Dansette Richmond Radio

Daiya TV-X Junior  Viewer

Dancing Coke Can

Dawe Transistor Stroboflash

Diamond Rio Media Player

Dictograph Desk Phone

Direct Line Phones x2

Dokorder PR-4K Mini Tape

Eagle Ti.206 Intercom

Eagle T1-206 Intercom

Eagle International Loudhailer

Electrolysis Cell

Electron 52D Spycorder

Electronicraft Project Kit

Ed 'Stewpot' Stewart Radio

EMS Stammering Oscillator

Ericsson Ericofon Cobra Phone

Etalon Luxor Light Meter

Euromarine Radiofix Mk 5

Exactus Mini Add Calculator

Fairylight Morse Set

FEP Microphone & Earphone

Ferguson FC08 Camcorder

Ferguson FHSC 1 Door Cam

Fi-Cord 101 Tape Recorder

Fi-Cord 202 Tape Recorder

Fidelity HF42 Record Player

Fisher-Price 826 Cassette

Fleetwood Globe AM Radio

Franklin LF-390 Guitar Radio

Gaertner Pioneer Geiger Counter

GE 3-5805 AM CB Radio

GEC Transistomatic

GEC Voltmeter

General Radiological NE 029-02

Giant Light Bulbs

Giant Watch-Shaped  Radio

Gowlland Auriscope

GPO Headset No. 1

GPO Keysender No 5

GPO RAF Microphone No. 3

GPO Telephone Series 300

GPO Telephone Type 746

GPO 12B/1 Test Meter

GPO Trimphone

GPO Ring Microphone No 2

Gramdeck Tape Recorder

Grandstand Video Console

Grundig EN3 Dictation

Grundig Memorette

H&G Crystal Radio

Hacker Radio Hunter RP38A

Hacker Radio Mini Herald

Hanimex Disc Camera

Harvard Batalion Radio

Henica H-138 Radio Lighter

Hero HP-101 Intercom

Hitachi MP-EG-1A Camcorder

Hitachi WH-638 Radio

Hitachi VM-C1 Camcorder

HMV 2210 Tape Recorder

Homey HR-408 Recorder

Horstmann Pluslite Task Lamp

Ianero Polaris Spotlight

Ingersoll XK505 TV, Radio

International HP-1000 Radio

Internet Radio S-11

James Bond TV Watch

Jasa AM Wristwatch Radio

Juliette LT-44 Tape Recorder

Jupiter FC60 Radio

JVC GR-C1 Camcorder

JVC GX-N7E Video Camera



King Folding Binoculars

Kodak Brownie Starflash

Kodak 56X Instamatic

Kodak 100 Instamatic

Kodak EK2 'The Handle'

Kodak EK160 Instant Camera

Kodak Pony 135

Kvarts DRSB-01 Dosimeter

Kvarts DRSB-88 Dosimeter

Kvarts DRSB-90 Geiger Count

Kyoto S600 8-Track Player

Magnetic Core Memory 4kb

Maplin YU-13 Video Stabilizer

Marlboro Giant  AM Radio

Mattel Intellivision

Maxcom Cordless Phone

McArthur Microscope OU

Memo Call Tape Recorder

Micronta 22-195A Multimeter

Micronta 3001 Metal Detector

Microphax Case II Fiche

Midland 12-204 Tape Rccorder

Mini Com Walkie Talkies

Minolta 10P 16mm Camera

Minolta-16 II Sub Min Camera

Minolta XG-SE 35mm SLR

Minolta Weathermatic-A

Minox B Spy Camera

Mohawk Chief Tape Recorder

Motorola 5000X Bag Phone

Motorola 8500X ‘Brick’

Motorola Micro TAC Classic

MPMan MP-F20 MP3 Player

Music Man Talking Radio

Mystery Microphone

Nagra SN Tape Recorder

National Hyper BII Flashgun

National RQ-115 Recorder

NatWest 24 Hour Cashcard

Nife NC10 Miner's Lamp

Nimslo 3D Camera

NOA FM Wireless Intercom

Nokia 9210 Communicator

Novelty AM Radio Piano

Olympia DG 15 S Recorder

Onkyo PH-747 Headphones

Optikon Binocular Magnifier

Oric Atmos Home PC

Panda & Bear Radios

Panasonic AG-6124 CCTV VCR

Panasonic EB-2601 Cellphone

Panasonic Toot-A-Loop Radio

Panasonic RS-600US

Parrot RSR-423 Recorder

Penguin Phone PG-600

Pentax Asahi Spotmatic SLR

Philatector Watermark Detector

PH Ltd Spinthariscope

Philips CD 150 CD Player

Philips Electronic Kit

Philips EL3302 Cassette

Philips EL3586 Reel to Reel

Philips PM85 Recorder

Philips P3G8T/00 Radio

Philips VLP-700 LaserDisc

Pifco 888.998 Lantern Torch

Pion TC-601 Tape Recorder

PL802/T Semconductor Valve

Plessey PDRM-82 Dosimeter

Polaroid Automatic 104

Polaroid Land Camera 330

Polaroid Supercolor 635CL

Polaroid Swinger II

Polavision Instant Movie

POM Park-O-Meter

Prinz 110 Auto Camera

Prinz Dual 8 Cine Editor

Prinz TCR20 B&W TV

Psion Series 3a PDA

Psion Organiser II XP

Pye 114BQ Portable Radio

Pye TMC 1705 Test Phone

Rabbit Telepoint Phone

Quali-Craft Slimline Intercom

RAC Emergency Telephone

Racal Acoustics AFV Headset

Radofin Triton Calculator

Raytheon Raystar 198 GPS

Realistic TRC 209 CB

ReVox A77 Tape Recorder

Roberts R200 MW/LW Radio

Rolling Ball Clock

Rolls Royce Car Radio

Ronco Record Vacuum

Royal/Royco 410 Recorder

Sanyo G2001 Music Centre

Sanyo M35 Micro Pack

Satellite AM/FM Radio

Satvrn TDM-1200 Sat Box

Science Fair 65 Project Kit

Seafarer 5 Echo Sounder

Seafix Radio Direction Finder

Seiko EF302 Voicememo

Seiko James Bond TV Watch

Sekiden SAP50 Gun

Shackman Passport Camera

Sharp CT-660 Talking Clock

Shira WT106 Walkie Talkies

Shira WT-605 Walkie Talkies

Shogun Music Muff

Simpson 389 Ohmmeter

Sinclair Calculator

Sinclair Black Watch

Sinclair FM Radio Watch

Sinclair FTV1 Pocket TV

Sinclair Micro-6 Radio

Sinclair Micro FM Radio

Sinclair Micromatic Radio

Sinclair Micromatic Kit (Unbuilt)

Sinclair MTV1A Micovision TV

Sinclair MTV1B Microvision TV

Sinclair PDM-35 Multimeter

Sinclair System 2000 Amp

Sinclair Super IC-12

Sinclair X1 Burtton Radio

Sinclair Z-1 Micro AM Radio

Sinclair Z-30 Amplifier

Sinclair ZX81

Smiths SR/D366 Gauge Tester

Speak & Spell

Sony Betamovie BMC-200

Sony CFS-S30 'Soundy'

Sony DD-8 Data Discman

Sony CM-H333 Phone

Sony CM-R111 Phone

Sony FD-9DB Pocket TV

Sony M-100MC Mic'n Micro

Sony MDR3 Headphones

Sony MVC-FD71 Digicam

Sony TC-50 Recorder

Sony TC-55 Recorder

Sony Walkman TPS-L2

Sony Rec Walkman WM-R2

Speedex Hit Spy Camera

Standard Slide Rule

Starlite Pocket Mate Tape

Staticmaster Static Brush

Steepletone MBR7 Radio

Stellaphone ST-456 Recorder

Stuzzi 304B Memocorder


Talkboy Tape Recorder

Taylor Barograph

Tasco SE 600 Microscope

Technicolor Portable VCR

Telephone 280 1960

Telex MRB 600 Headset

Thunderbirds AM Can Radio

Tinico Tape Recorder

Tokai TR-45 Tape Recorder

Tomy Electronic Soccer

Toshiba HX-10 MSX Computer

Triumph CTV-8000 5-inch TV

TTC C1001 Multimeter

Uher 400 RM Report Monitor

Vanity Fair Electron Blaster

Vextrex Video Game

VideoPlus+ VP-181 Remote

Vidor Battery Radio

View-Master Stereo Viewer

Vivalith 301 Heart Pacemaker

VTC-200 Video Tape Cleaner

Waco Criuser AM Radio

Waco TV Slide Lighter

Wallac Oy RD-5 Geiger Counter

Weller X-8250A Soldering Gun

W E Co Folding Phone

White Display Ammeter

Wittner Taktell Metronome


Yamaha Portasound PC-10

Yashica AF Motor 35mm

Yupiteru MVT-8000 Scanner

DP-66M Cold War Geiger Counter, 1970

Even those who weren’t around during the Cold War will know that the US and much of Western Europe spent the best part of three decades living in dread of being blown to smithereens. What’s rarely mentioned is the fact that populations in the former USSR and Eastern Block countries had similar fears, possibly more so, thanks to tightly controlled media and even more pervasive propaganda. Precautions were taken on both sides to prepare for the aftermath of a nuclear exchange and this included manufacturing large quantities of Geiger Counters and radiation monitoring equipment for use by the military and Civil Defence services.


We’ve already covered several Western instruments, like the iconic American CDV-700 and the British PDRM-82, so it’s about time we had a look at what they were using (or rather, hoping never to use...) on the other side of the Iron Curtain. This is a DP-66, a Polish made derivative of the Russian DP-5V, and widely used in Warsaw Pact countries.  In many ways the DP-5V was the Soviet equivalent of the CDV-700, however, it was nowhere near as good and nowadays is only of interest to collectors of Cold War memorabilia but the DP-66 is another kettle of fish and a vast improvement on the DP-5V. It was very well made with modern – for the time -- electronic components and unlike its predecessor, used readily obtainable batteries. Even though it dates from the late sixties they are still very useable and sensitive enough to detect low levels of natural and man-made radioactivity. Many were made and stockpiled and a lot of them have survived. What’s more, compared with Western instruments of the same period, they’re relatively inexpensive.       


Although it’s similar in size to the CDV-700 there are a couple of very obvious differences. The first one is the brown Bakelite-type thermoplastic case; the other is the probe, which is a good deal larger than the one on its US contemporary. It is clear that the designers were keen for users to keep potentially dangerous sources of radiation at arm’s length, and preferably even further away, using the supplied half-metre long telescopic extension pole.


The other reason for the size of the probe that it contains not one, but three Geiger Müller detector tubes. These vary in sensitivity and the types of radiation they can detect, from low level Beta up to lethal, kill you dead Gamma. As an added bonus the DP-66 outfit comes with a DKP-50 quartz fibre pen dosimeter and there’s a charger built into the case. This is worn on the user’s clothing, to monitor long-term exposure to high levels of Gamma radioactivity. All of this means that the DP-66 outfit can function in a very wide range of post-apocalypse situations; the US approach was to use at least three separate instruments (CDV-700, CDV-715/7 & CDV-742), which was clearly less convenient than this one box solution.


The unit is powered by two standard 1.5-volt D cell torch batteries that can keep it running for 60 hours or more (most CDV-700’s used four D cells) and these fit into a cylindrical holder with a screw cover in the end of the case. The large moving coil meter in the middle of the top panel has several very useful features and as well as scales showing counts per minute and milli-Roentgen/Roentgen per hour (when measuring Gamma radiation), there’s battery test indication. It’s also backlit, by pressing the button marked ‘OSW’ to the right of the meter and it’s also luminous, so it’s easy to use at night or in darkened conditions. In addition to the backlight button there are three other controls. A second button, marked ‘KAS’ zeros the meter (enabling a new reading to be taken quickly as the needle moves quite slowly when taking continuous readings).  A rotary control to the left of the meter (marked DKP-50) is used to zero the needle (quartz filament) inside the pen dosimeter during charging, which takes place when it is inserted into the capped tube in the bottom left hand corner of the top panel. Finally there’s the 8-position rotary switch on the right hand side. The Off position is marked ‘W’. The next position ‘K’ is for battery test and the remaining six positions set range and sensitivity. Positions 3, 4 and 5 are for detecting high to medium levels of Gamma radiation and relate to the Roentgens per hour part of the meter scale (0 – 200, 0 – 5 & 0 – 0.5); positions 6, 7 & 8 are for low-level Gamma and Beta radiation, as milli Roentgens/hr (0 – 50, 0-5 and 0 - 0.5) and counts per minute or cpm (0 – 1M, 0 – 100k & 0 – 10k cpm). In the middle of the top panel there’s a capped cover protecting the meter pointer’s zero adjustment. The thick cable for the external probe emerges from the right end of the case and on the other end of the case there are two small sockets for the proprietary two-pin connector used by the magnetic earpiece, which is also included with the outfit.


Before we move on a quick mention for the probe’s rotating metal shield, for discriminating between Beta and Gamma radiation. It has three positions: Bx1 has series of horizontal slots that exposes a thin internal aluminium foil window, allowing the weakest Beta particles to pass through to the detection tubes. The second Bx10 position has a single small hole, which decreases Beta sensitivity by a factor of 10, and the third position, marked ‘G’ shields the aluminium window so only gamma radiation can enter the probe.


Inside the case the electronic components are mounted on two superbly well-made printed circuit boards. It’s proper old-school construction with a neat, laced loom connecting the circuits boards and internal components. Both boards are protected from damp by effective case seals and a thick coating of waterproof or conformal paint. 


A complete DP-66 outfit includes a heavy-duty leather carry case with shoulder and waist straps, a rather dodgy looking mains adaptor that fits into the battery compartment, the previously mentioned probe extension pole, a DKP-50 pen dosimeter, a small screwdriver, a pack of protective covers for the probe and the instruction book and equipment log book (both in Polish – fortunately there are good English translations on the web). Everything is securely contained in a tough wooden case. It’s a bit rough and ready and typical of boxes used to transport military hardware, but stripped, sanded and varnished, it can look quite presentable. Normally the DP-66 comes with a radioactive check source, to verify that it is working and check calibration however, these were all stripped out following removal from storage.


This DP-66 is date-stamped 1970 and I acquired it some time ago, shortly after they were released from storage and found their way into the civilian market. It had been little used and was very well preserved. There was dirt and tarnish on exposed metal surfaces but it scrubbed up really well with liberal applications of household cleaner and Brasso. I suspect that the case had never been opened – the seals on the bolts holding it together hadn’t been touched – and inside it was as clean and dry as the day it was made. Since then it has only been opened a couple of times, but only to take photographs as it was working faultlessly when I got it, and has continued to do so ever since.  


With a set of fresh batteries installed it gives good readings on the low ranges (with shield in Bx1 position) from watches and clocks with luminous radium painted dial and hands. There also healthy clicks from the earpiece. It sounds like an attractive alternative to the increasingly expensive American CDV instruments, and in many ways it is but there are a few minor drawbacks. To begin with it is around 20 percent less sensitive to Beta radiation than a CDV-700 so it takes a slightly more ‘lively’ source to really get the meter moving. The probe is a bit of a handful and not well suited to a spot of undercover detection – it’s pretty clear what you are up to if you’re out hunting for radioactive antiques, glass or ceramics, waving that big black and shiny probe around. Lastly, the electronics are more complicated than its US rival. There are 8 transistors, three Geiger tubes and a few components that could prove tricky to find should it go wrong. On the plus side they have proved to be more rugged and reliable than their American counterparts, and the manual includes a good circuit diagram, but if a fault does develop it could prove challenging to fix.


What Happened To It?

Production of the DP-66M continued until the early eighties and it remained in service until the late 1990s when it was presumably replaced by smaller, lighter and doubtless cheaper and more sophisticated instruments that would be easier to maintain and store. Even though most DP-66’s are now over 40 years old, in good working order they’re still practical instruments for detecting and measuring radioactivity. Clearly they’re a bit too bulky for discreet urban prospecting -- there are plenty of pocket-sized instruments better suited to that sort of application -- but they still have a lot to offer to experimenters, hobbyists, amateur scientists, environmentalists, rock hounds and not forgetting Doomsday Preppers. They’re affordable too, with prices for complete boxed outfits starting at around £60; these probably work but may need a good clean and some TLC. £100 or so should buy a more presentable example, but if that’s above your pay grade there’s always the bargain basement option. If you know your way around simple electronic circuits, dead ones can sometimes turn up on ebay selling for £30 or less, but be warned, you could be lumbered with a doorstep if the fault is due to a hard or impossible to obtain part.


First seen:          1969

Original Price:   N/A

Value Today:     £60 (0117)

Features:           3-tube Geiger counter (STS-5, DOB-50 & DOB-80), Beta & Gamma sensitivity 0.5 mR/h – 200R/hr (6 ranges) rotating Beta shield, built in charger for DKP-50 type pen dosimeter, luminous & backlit meter scale, meter/reading zero, magnetic earphone output. Accessories: earphone, mains adaptor, leather case with neck & waist straps, probe extension handle, manual & calibration logbook, wooden storage/carry case

Power req.                           2 x 1.5v D cells

Dimensions:                         Main Unit: 173 x 115 x 100mmm, Probe: 290 x 49 (max)

Weight:                                2.1kg (main unit & probe)

Made (assembled) in:           Poland

Hen's Teeth (10 rarest)         4

Nuclear Enterprises PDM1 Doserate Meter, 1983

Although nuclear or 'ionising' radiation is invisible, has no taste or smell and is beyond the  normal range of our senses, it is not too difficult to detect. There are several ways, apart from rampant zombieism, or growing an extra head, and the best known is the ubiquitous Geiger Counter. Other method include things like Cloud Chambers and scintillation detectors, which contain exotic crystals that produce brief flashes of light when struck by radioactive particles. However, one of the simplest type of detector is the Ionisation Chamber. You probably have several of them in your home in the form of 'free air' ionisation chambers. These are the small metal or plastic devices found in most types of domestic smoke detector. They are open to the atmosphere and inside there's a tiny radioactive source. This emits a stream of particles and if it senses that the flow has been interrupted, by passing clouds of smoke or noxious gasses, an electronic circuit sets off the alarm.


Another type of ionisation chamber can be found inside this Nuclear Enterprises PDM1 Portable Doserate Meter, it’s around 50 times larger than the ones in most smoke detectors, and this time it is sealed and filled with a gas at low pressure. It works the other way around to a smoke alarm and is designed to detect radiation, rather than smoke, and instruments like this are used throughout the nuclear power industry, in research laboratories, hospital nuclear medicine and radiography departments and for environmental monitoring. If fact you’ll find them wherever there’s a possibility of encountering potentially harmful levels of X-Rays, Gamma rays and Beta particles, which are the main types of radioactivity proven to cause long-term damage to human tissue, with prolonged or uncontrolled exposure. 


Inside the PDM1’s ionisation chamber there is a pair of electrodes carrying an electric charge. When a radioactive particle enters the chamber it interacts with or ‘ionises’ gas molecules, releasing electrons that head towards the electrodes – attracted by the electric field – and from there the tiny charges can be measured using relatively straightforward electronic circuits. This type of Ionisation chamber is not especially sensitive and it doesn’t respond to low-level sources or Alpha radiation but it is very good at detecting and accurately measuring radiation in terms of exposure or dosage.


It looks quite complicated but it is actually very easy to use and everything the user needs to know is shown on that large analogue meter. The rotary switch on left is responsible for switching it on, checking the batteries, zeroing the meter and putting it into measuring mode. There’s a small knob in the middle for the meter’s zero adjustment and the switch on the right sets the type of measurement (dose or doserate) and the measuring range.


Broadly speaking dose is an indication of how much radioactivity you are being exposed to at any one time. Nowadays dose is measured in Sieverts but a Sievert is a helluva lot of radioactivity and in practice it is more convenient to express it in terms of microsieverts (uSv). Doserate is a measure of radioactive exposure over time, in micro or milliSieverts per hour (uSv/hr). The Dose ranges on the PDM1 are 30 and 300 uSv, and for Doserate it’s 30 and 300uSv/hr and 3, 30 and 300 mSv/hr. What the readings mean, and when it’s time to run is another matter, but be assured that if ever your job entails using an instrument like this, you’ll know exactly what to do when you see that needle move…


There’s only one other item of interest on the outside and that’s a sliding panel on the base. When open this exposes a sheet of thin metalised plastic film, and behind that is another metal film covering one end of the ionisation chamber. The purpose of the panel is to block Beta particles, which the instrument will detect, but they skew readings of X-Rays and Gamma rays, which is what the device is calibrated to measure.


The PDM1 was made in the UK (Scotland) in the early 1980s by Nuclear Industries, then a division of Thorn EMI. It’s a little larger than a standard house brick and probably cost hundreds of pounds when new. Precisely how much it cost is difficult to say, it’s not the sort of thing you'd have found in an 80's Argos catalogue… Around a third of the case is taken up by the ionisation chamber, which is mounted underneath the meter. There’s a large compartment, beneath the carry handle, for the batteries; it takes  five, four 9 volt PP3s, used to generate the high voltage field for the ionising chamber, and a 9 volt PP9, which drives the electronics. The sealed module beneath the battery compartment is a high-gain, low noise amplifier that’s connected directly to the Ionisation chamber. It is very sensitive and the designers have gone to a lot of trouble to shield it against interference from other electrical and electronic devices, which could cause spurious readings. No expense was spared in its design and construction, so you can take it as read that it’s rugged and capable of withstanding a lot of harsh treatment. The only really fragile components are those thin metalised plastic membranes covering the ionisation chamber and if the inner one is punctured it’s basically kaput.


According to the stallholder at the Surrey antiques fair where I bought this PDM1 (one of a pair of meters he had – the other, a simple PDR1 rate meter will appear here soon) it was part of a lot of instruments sold off by a company involved in the digging of the Channel Tunnel. It sounds quite plausible and there’s no doubt that the extracted materials would have been routinely monitored. However this one appears to have been removed from service quite early on in its career, judging by its unusually clean appearance  and a ‘Not to be used sticker’ on the meter. In other circumstances it might have been a risky purchase but since the two meters only cost me £20, and the film covering the ionising chamber seemed to be intact, it wasn’t a huge gamble. The meters alone were worth the asking price. It turned out that the PDM1 had been decommissioned for good reason, someone forgot to change the batteries and there was a rather nasty mess inside the battery compartment. Fortunately the damage was minimal and mostly confined to the battery terminals, which had to be replaced. The corrosive fluid that leaked from the batteries had dried out and cleaned up quite easily. It didn’t even stain the thick layer of powder coat protecting the alloy case and apart from the battery terminals the only other casualty was a foam insert meant to stop the batteries rattling around.


There was a minor problem testing the unit as PP9 batteries are now obsolete. They are still available but very expensive and typically sell online for over £7.00, far too much to spend on what may have turned out to be a doorstop. Luckily they’re really easy to replicate with a cheap 6 x AA cell battery holder costing £1.50. I still wasn’t holding my breath; this particular instrument is well over 30 years old but I needn’t have worried and it fired up first time, responding well to a particularly ‘lively’ travel alarm clock with radium-painted luminous hands and face. The readings may not be that meaningful as by now it is well out of calibration but it definitely detects radioactivity, and long-term readings suggest that it may even be sensitive enough to respond to normal background radiation, and over time, could let you know if there’s an unexpected increase.


What Happened To It?

The roots of Nuclear Enterprises dates back to the 1950s as Netsensors, a company making instruments for the aerospace industry but after a number of takeovers and mergers it was sold to EMI in the mid 1960s, and became part of the Thorn EMI group in the late 70s. By then Nuclear Enterprises was heavily involved in radioactive measurement and instrumentation, and doing quite well by all accounts, but the division was sold off in 1987 in a management buyout. I worked for the consumer side of Thorns in the late 70s and I was aware that the company was having a tough time. By the mid 80s they were selling off a lot of their smaller subsidiaries, so it may have been a bit of a fire sale. Anyway, Nuclear Enterprises continued in the field of nuclear detection and instrumentation and in 2002 it was acquired by the French company FGP Sensors, at which point the NE brand and identity seems to have disappeared from view.


Back to the here and now and technology has moved on. Modern instruments are smaller, more responsive, have many more features and almost certainly cheaper than this old beast so it’s probably outlived its usefulness. Nevertheless, it is entirely possible that there are still a few PDM1s of a similar vintage still in service and provided they’re regularly calibrated and well looked after they can go on for a very long time. Outside of their natural homes, in the lab or in the field, they’re not a lot of use to the average citizen and the enthusiast and collector’s market is quite small, so don’t expect to turn a quick profit if you ever find one going cheap at your local car boot sale. On the other hand, if you’re of a cautious disposition, concerned about the next (and probably last, world war…) or living next door to a flaky nuclear power station or weapons facility, it might be worth having a working one tucked away, just in case the balloon goes up. It might be a long wait, though, so don’t forget to remove the batteries…


First seen               1983

Original Price         £?

Value Today           £10 (1116)

Features                 Down-pointing ionisation chamber with sliding beta shield, (100sq cm detection area), skin & depth dose/doserate measurement, (30 – 300 uSv, 30 – 300uSv/h & 3 – 300mSv/h, 9cm analogue meter display, battery condition indication, set zero adjustment

Power req.                     1 x 9v PP9 & 4 x 9v PP3

Dimensions:                   245 x 125 x 170mm

Weight:                          1.8kg

Made (assembled) in:    UK

Hen's Teeth (10 rarest):  8

Gaertner Pioneer G-5B Geiger Counter, 1955

Most of us are familiar with tales of grizzled prospectors, staking claims, panning and digging for gold during the mid-nineteenth century Californian Gold Rush. What you may not be aware of was a later and even bigger hunt for mineral riches in the US. During the late 1940s and 50s’ tens of thousands of prospectors scoured the South-western states (mostly Arizona, Colorado, Oregon, New Mexico and Nevada) for buried ‘A-Metal’ or Atomic Metal, better known to us now as Uranium.


In the years following the Second World War and at the start of the Cold War, America was in the grip of a desperate arms race, to develop ever larger and more powerful nuclear bombs. This created a huge demand for Uranium for refining and processing, mostly into the isotope Uranium 238 for use in weapons and reactors.


The US Atomic Energy Commission actively encouraged both amateur and professional prospectors to locate deposits of Uranium ore, offering bounties of $10,000 for big finds. Gold is shiny and relatively easy to spot, when you know where to look, but to the untrained eye Uranium ore looks pretty much like any other rock. However, it does have one rather useful property, it’s radioactive. Companies manufacturing Geiger Counters, and scores of new ones, which appeared out of the woodwork, raced to sell their instruments to the hoards of hopeful prospectors, often making fanciful claims about vast fortunes to be made. The reality was somewhat different. Substantial finds were few and far between and those that found and mined deposits sometimes received dangerous and often lethal radiation doses whilst others tried to increase the value of the ore they found by refining it using suspect DIY methods, leading to large numbers of casualties and deaths.  


But back to the business of prospecting and this little gadget dating from the mid 1950s. It’s a Pioneer G-5B Geiger Counter, manufactured by The Gaertner Company, located at the intriguingly numbered 812½ - 814 La Brea Avenue in Hollywood California. It was small, relatively affordable (it sold for under $60), sensitive and very easy to use. No arguments there and it’s a textbook example of just how simple a radiation detector can be.


Incidentally, strictly speaking the G-B5 is not a proper Geiger ‘Counter’ as it has no display or means of measuring the level of radioactivity, but we'll let that pass for now. It uses just a small handful of electronic components, and bizarrely, a Champion spark plug, but the key to its brief success, and short life, is a pair of Victoreen IB85 Geiger Müller detection tubes. These are genuinely sensitive devices, able to detect relatively low levels of the Beta and Gamma radiation emitted by Uranium ore but they have two very particular drawbacks. Firstly they require a 900-volt supply, and second, the outer casing is a very thin aluminium tube.


The power supply problem was solved using what may be described as a 'pump' circuit. Geiger tubes generally consume very little power, and once charged up to their working voltage, they need only occasional topping up as the charge dissipates, as and when radioactivity is detected. The Pioneer circuit uses a simple step-up transformer circuit to boost the voltage from one of the unit’s two batteries to the required 900 volts, by pressing a button on the top of the case every so often. It’s very similar to the way the ignition circuit works on older cars. This relies on a switch – the contact breaker -- that is mechanically coupled to the engine. When the engine turns over it opens and closes the contact breaker to produce a rapid series of low voltage pulses that are fed to the ignition coil and this generates the high voltages that create the sparks inside the cylinders. The spark plug in the Pioneer G-5B provides isolation and rectification in the high voltage (HV) circuit*. The real problem, though, was the fragility of the IB85 tubes. They are acutely sensitive to sudden changes in air pressure and you may be able see in the photograph above that both tubes in this G-5B have been crushed. It turns out that this was very common and many of them came to grief when the Geiger Counter was put in the boot (trunk) of a car and the lid slammed shut. If they hadn’t been crushed it probably wouldn’t have made much difference, though, and by all accounts these tubes only lasted a few years.  


The rest of the circuit involves a single triode valve. When a radioactive particle enters the Geiger tube it produce the characteristic click and this is amplified by the valve and fed to a headset that plugs into a pair of sockets on the top of the case. And that’s pretty much all there is to it. Power comes from a pair of batteries; one is a low voltage ‘A’ type battery (typically 1.5 volts), for the valve’s heater filament. The other is a HT (high tension) ‘B’ type battery (45 volts), which powers the valve and provides the drive voltage for the transformer that feeds the Geiger tube.


The sort of compact high voltage B battery the G-5B uses would have been quite common and widely available back in the mid 50s as they were used in valve-based portable radios. They stopped making them years ago but it is possible get modern repros or replicate them by connecting 9-volt transistor radio batteries in series. However, it’s going to take a fair bit of work to get this particular unit working again. Intact IB85 Geiger tube are virtually unobtainable; modern 900 volt tubes might be persuaded to work, but there are serious question marks over the valve -- not helped by the number having rubbed off -- and the high voltage transformer. These are a common failure point as the insulation on the windings degrades over time, especially if the unit has been stored in a humid atmosphere for any length of time. Even a tiny pinhole rupture in the insulation can be enough to produce a high voltage arc that will destroy it.


Otherwise it is in extraordinarily good condition for its age. The metal case is very clean, free of any serious scratches or corrosion and the green plastic protective shields for the Geiger tubes – on the underside of the case – are uncracked. All of the switches work; the only other components (two very large resistors, which can just be seen in the photo above) check out as okay, and there’s really not much to go wrong with the spark plug. The bottom line is that it could be restored but for the moment it’s going to have to wait its turn on my long (and rapidly growing) list of rainy day jobs.


For the record I found this one on the US ebay site some time ago and fully expected it to be snapped up by collectors. It was accurately titled and described, with a low starting price of $25 and free shipping (within the US) so I was surprised to discover, just two hours before the auction was due to end that it hadn’t attracted a single bid. I still had no doubt that it would fetch a decent price but just in case I put on a speculative bid of $30 and went to bed. There were no other bids and two weeks and $45 later (shipping was another $20) it was in my very grateful hands. 


What Happened To It?

The Uranium ‘Rush’ only lasted a few years and it appears that relatively few Pioneer G-5Bs, or the many other basic prospecting detectors from the same period, have survived so by rights it should be quite collectible. However, it was part of a fairly obscure slice of US history and the market for this kind of Atomic Age curio is currently quite small. They do turn up on ebay every so often and occasionally, when a couple of bidders get stuck in, they can top £50. Like prospecting for Uranium it’s not going to make you rich but relics like this can suddenly take off, and are definitely worth grabbing, if you ever come across one for a sensible price.


* Update. I am obliged to members of the excellent Geiger Counter Enthusiasts forum on Yahoo for additional information and corrections to my assumption that the spark plug was for voltage regulation, and that the B battery was 45 volts, not 67.5 volts.


First seen                  1955

Original Price           $59.95

Value Today             £50.00 (0116)

Features                   2 x IB85 Geiger Müller detection tubes, ‘pump’ type tube power supply (900-volt nominal), headset output, headset and check source included with outfit

Power req.                    1 x 67.5 volt Eveready 467, 1 x 1.5 volt filament battery

Dimensions:                  155 x 140 x 83mm (inc handle)

Weight:                         620g

Made (assembled) in:    USA

Hen's Teeth (10 rarest):  8

General Radiological Ltd Type NE 029-02, 1957

Firemen often seem to have the best toys, which of course are entirely necessary in their clearly hazardous profession, but who amongst us wouldn’t want to have a ride on a fire engine or have a go with one of those ‘Jaws of Death’ car peelers? Fire station poles also look like a lot of fun and how about a quick squirt with one of those high-power hoses? They’ve got loads of more exotic stuff as well, and tucked away inside their equipment lockers quite a few of them have Geiger Counters.


This is not a new development in response to any terrorist threats or atomic accidents, they’ve had access to them for decades, since before the Cold War and for at least as long as there have been nuclear weapons, power stations and radioactive waste being carted around the country. Here’s an example of one that apparently they used to have back in the fifties and sixties, at least that’s the story, which I have yet to corroborate, but it all looks and sounds very plausible.


The age of this instrument, a Type NE 029-02 made by General Radiological Ltd., is in little doubt though, and it proved fairly easy to date. On the circuit board inside the case there’s a pair of TJ1 point contact transistors and these were made by STC, but only for a brief period, starting in 1956. I have Andrew Wylie and his excellent Mister Transistor website to thank for that useful titbit and a wealth of other information about vintage semiconductors. It’s a surprisingly compact design, most other military and industrial Geiger Counters of the period tended to be large and bulky; this one fits snugly in the palm of a hand.


It is really rugged, which fits in with the Fire Brigade story; it’s almost certainly waterproof as well and easy to carry and operate, even when the user is wearing thick protective clothing and gloves. Inside the light but tough two-part cast alloy case there’s a Mullard MX129/01 Geiger Müller tube. This is mainly sensitive to Gamma Radiation, which can be nasty stuff and is the kind that does the most damage and poses the greatest threat to those unlucky enough to be close to an exposed source. On the top panel there’s a small meter showing a relative reading of radiation dose in milliroentgens per hour; the rotary switch below the meter has four positions: Off, Battery Test and Sensitivity (0-0.5 and 0-5 mR/hr). Incidentally, nowadays most instruments of this type measure gamma radiation dose in Sieverts and REMs (Roentgens Equivalent Man), rather than mR/hr but the basic principle is the same and if the needle moves, especially on the high range, you’ve found your source radioactivity and it’s time to back off! The NE 029-02 also has an audio output and comes supplied with a single headset, which plugs into a small two-pin socket on the top panel. This allows the user to hear the clicks coming from the detector tube, which can be helpful when trying to locate hazardous sources of radioactivity.


It is powered by three1.5 volt AA cells, which live in a sealed compartment on the top panel. The two previously mentioned transistors look as though they are used in a simple multivibrator circuit, which pumps pulses of electricity into a coil and multiplier that generates the 400 or so volts needed to power the Geiger tube. As you may be able to see from the photos it’s a real work of art, beautifully built, by hand, with all of the components neatly soldered to orderly rows of pins. Fragile components, like the point contact diodes have small coils wound into their leads to provide some cushioning against knocks and bumps. Rubber seals around all of the case and battery cover joints make sure water can’t get in.


I found this one hidden at the bottom of a pile of Fire Brigade related items at a large open-air antique fair in Surrey. The stallholder said the collection belonged to a retired fireman, and he believed everything was standard service issue. It appeared to be in very good condition and came with its original bright red carry case, shoulder strap and the high impedance headset. The seller didn’t know if it was working or not, hence the asking price of just £6, which I felt duty bound to haggle down to £4.00 – bargain of the day!


Unsurprisingly it was as dead as a doornail and the most serious fault wasn’t hard to find. A leaky set of cells had rotted away the spring steel contacts in the battery compartment. Fortunately there was no other damage and it cleaned up easily. Connecting a bench power supply to the unit indicated that the battery test function was okay, but the detector circuit remained stubbornly silent. The two transistors produced some slightly anomalous readings but there were no obvious faults. Replacing the transistors didn’t help so the suspicion has now shifted to the high voltage transformer, half a dozen or so long obsolete selenium rectifiers and the Geiger tube. The big problem, though, is the lack of a circuit diagram, so it will have to join the waiting list until I have time to re-trace the circuit, or track down a service manual. It almost certainly is repairable but it’s going to take time. On the plus side the condition, outside and in, is extraordinarily good; the circuit boards looks as though they was assembled yesterday, and the case shows only very light signs of use.


What Happened To It?

Up to date information on the sort of radiological monitoring equipment currently used by Fire Brigades in the UK is a bit thin on the ground but in 1995, in reply to a parliamentary question on the topic, it turned out that there were only 6 units to cover the whole of London. Seemingly radioactivity was not considered to be a huge priority back then. They’ve probably upped their game by now and it would be very surprising if a lot more instruments have not been issued, but it is highly unlikely that any of these old NE 029-02s are still in circulation.


General Radiological Ltd., was bought out by the Rank Organisation in the early sixties and since then seems to have vanished from sight. Although the NE 029-02 is well built it is no match for modern instruments, in terms of sensitivity and accuracy, and my guess is that they wouldn’t have remained in service for very long, probably less than 10 years. Maintenance would have been a problem; first generation semiconductors had a fairly short life expectancy Other components, like electrolytic pacitors and selenium rectifiers, degrade over time and the one thing you don’t want in a Geiger Counter, used in safety-critical applications, is unreliability.


I can find no information on how many NE 029-02s were built but I suspect it was probably in the low hundreds as the demand wouldn’t have been that great. That would make this one quite rare but sadly it doesn’t translate into big bucks; it’s a bit too weird to attract most collectors of vintage electronics, and unfortunately, in its present state it is of little practical use. Nevertheless, it’s an unusual and arguably historical example of early transistor technology and if anyone has any more information, or a circuit diagram I would be very interested to hear from them. 


First seen                1957

Original Price          £?

Value Today            £25 (0715)

Features                  Mullard MX129/01 halogen-quenched gamma-sensitive Geiger Müller tube (0.0004 – 0.2R/hr), selectable range (0-5mR/hr & 0–0.5 mR/hr), 2 x transistor HV generator (2 x STC TJ1), battery test function, waterproof case, headphone output, carry case & strap supplied

Power req.                    3 x 1.5 volt AA cells

Dimensions:                  198 x 123 x 49mm

Weight:                         1.5kg

Made (assembled) in:    England

Hen's Teeth (10 rarest):  9

CDV-700 Civil Defence Geiger Counter 1960 - 68

This is the classic Geiger Counter that has featured in countless movies and TV programs over the years. Although the design is more than 50 years old it is still seen from time to time in current productions, including recent episodes of NCIS. I always have a little chuckle when I see one on the screen as it is usually accompanied by a 'ticking' sound as our hero or heroine locates a radioactive source. In fact there is no built-in speaker, just a really weird and long obsolete socket for an equally obsolete headset. but the point is, it looks the part.


These instantly recognisable instruments were first produced in the early 1960s, at the height of the Cold War. Hundreds of thousands of them were made for the US Civil Defense Corps, to be kept in fallout shelters and issued in the aftermath of a nuclear attack. Several different models were made and the manufacturing was contracted out to specialist companies, including Electo-Neutronics Inc (ENI), Universal Atomics, Victoreen, Anton and Lionel, the latter being better known to many Americans as a maker of toy trains.


The CDV-700 (sometimes CD V-700) was the most sensitive model; it uses a Geiger Muller tube and can easily detect low levels of background radiation up to lethal doses. Other models, like the CDV-715 and 717 were only capable of sensing very high levels and if you ever saw the needle move on one of those you were probably going to die...


No expense was spared in their design and construction. They were built to last; those that survived mostly still work, or can be easily bought back to life as the electronic circuitry is very simple (most had just two or three transistors). They run off standard 'D', type torch batteries that last for several weeks in continuous use. The Geiger tube is housed in the detachable probe handle and it has a clever rotating shield that allows the user to discriminate between Beta (nasty but doesn't travel very far) and Gamma (really bad and gets through almost anything) radiation. It was meant to be easy to use and came with an instruction manual that could be understood by untrained personnel. Calibration was simple, on the side of the unit is a 'Check Source' label containing a small piece of radioactive material (Radium D/E or Lead 210) and when the probe is bought close to it, the meter on the top can be adjusted to give the correct reading. Over the years the radioactive material has decayed - the half-life of the source is around 22 years -- so they are no longer reliable but there's still enough activity enough to give a decent reading.


What Happened To It?

CDV Geiger Counters, Survey Meters and dosimeters were produced throughout the 1960s and the stocks were scrupulously maintained - regularly tested and recalibrated -- until the mid 1990s when they were gradually phased out. Local and Federal government bodies auctioned off stocks and many of them ended up in private hands, schools and colleges, which is where I come in. A few years a go I bought up a few CDV-700s, mostly 'as new' unissued stock, which I have been steadily selling off on my anythingradioactive web site. Sadly they are coming to an end now but you can still find them on ebay in the US. The only problem is they are quite heavy and the shipping costs can be prohibitive, moreover in some states the export is banned, probably due to the radioactive check source labels. 


The great thing about CDV 700s is that they are a practical gadget and (mostly) still work. You would be surprised how much radioactivity there is out there, everything from the hands and dials on old watches and clocks with luminous hands (radium paint was used up until the 1950s), glassware and porcelain that uses uranium tints and glazing, old gas mantles (doped with thorium to increase brightness) and even granite kerbstones which can contain traces of naturally occurring uranium ore.


I doubt that you will see very many of them here in the UK but if you do, it's not a silly price and it still works grab yourself a little piece of Cold War history.



First seen:                        1960

Original Price                   £ unknown

Value Today?                   £30 - 100, depending on condition

Features:                          Single switch off x100, x10 & x1 range, detachable probe with beta shield, carry strap, water-resistant case, three range settings, covering 0 - 0.5, 0 - 5 and 0 - 50 mR/h (millirontgens per hour), check source label, high impedance headphone

Power req.                       2 or 4 D cells (depending on make)

Weight:                            1.5kg ex batteries

Dimensions:                     120 x 210 170

Made in:                           USA

Hen's Teeth (10 rarest):     7

Victoreen CDV-715 1B Survey Meter, 1965

This is arguably one of the most useless gadgets we have featured to date (but give it time…) and if you ever see the meter on a CDV-715 move of its own accord you have probably just survived a nuclear explosion and may shortly die a horrible death…


The Victoreen CDV-715 was produced at vast expense and in large numbers (almost 600,000 were made) throughout the mid to late 1960s, at the height of the Cold war. They were intended for use by US Civil Defense personnel in the aftermath of an attack, and designed to indicate if it was safe to leave your bomb shelter. It looks a lot like the classic Geiger Counters of the era and it does indeed measure radioactivity, but this is quite a different beast and technically known as a Survey Meter. It’s definitely not a Geiger Counter for the simple reason that the radiation detecting device inside the box is an Ionisation Chamber, rather than a Geiger Muller tube, and whereas Geiger Counters generally measure (and count) relatively low levels of radioactivity; Survey meters like this respond only to very high, and usually lethal doses, which is why you never want to see that needle move.


Following the end of the Cold war in the l990s the US Civil Defense scrapped most of these meters, tens of thousands of them were sent to landfill or sold as scrap but a lot found their way onto the market through government surplus sales. Unfortunately they are often mistakenly or misleadingly labelled as Geiger Counters and inadvertently bought by people who believe that they are going to protect or alert them to radioactive leaks, contaminated food and so on. This is something the CDV-715 definitely cannot do. There are usually quite a few of them on ebay (US) and I suspect that in a lot of cases they are innocently described because the seller simply doesn’t know much about it. However, there are plenty of examples of them being deliberately mis-sold, and this happened a lot in the aftermath of the Fukishima power plant accident in 2011; at one point they were being sold on Amazon, with optimists asking several hundred dollars for them.


Ion Chambers are one of the simplest types of radiation detector and you almost certainly have at least one of them in your own home, as they are a key component in most household smoke detectors. Essentially it’s a small, enclosed metal cylinder with an insulated electrode inside. A voltage is applied across the electrode and the body of the cylinder and when radioactive particles enter the can the gas inside (air in the case of the CDV-715) is ionised, generating a small current that is detected by a simple electronic circuit. If there are enough particles, a reading will be displayed on the meter. Basic ion chambers like this one are pretty insensitive and it takes a lot of radioactivity to produce a reading but is possible to increase their sensitivity by filling the chamber with specialised gasses at high pressures. Incidentally, the ion chambers in smoke detectors work in a slightly different way. They have a small radioactive source inside (normally a tiny pellet of Americium 241), which emits a constant stream of alpha particles – it’s okay, they are very weak and can’t get out. This produces a constant ionisation current, but if smoke enters the chamber the stream is interrupted and this triggers the alarm.


The 715 is actually very easy to use. It has only two controls, the knob in the middle has a spring-loaded circuit check position that tells the user that the battery is okay and it is working. The next position is for zeroing the meter using the small black knob beside the handle (ion chambers are very sensitive to humidity) and there are three range settings for gauging the level of radioactivity, calibrated in the now almost defunct Roentgen units. They were built to government specification by several companies, this one is made by scientific instrument manufacturers Victoreen, other makers include Lionel (a well known US toy maker) and Landers Frary & Clarke. At the time money was no object, reflected in the quality of the materials and the high build quality. There is little to go wrong – leaky batteries were the commonest cause of failure -- and during their service life they were regularly checked and maintained. Many of the ones that come on to the market are still in good condition, though they often show signs of wear and tear on the case.


What Happened To It?

Survey meters are still being made though most modern instruments are a lot more sensitive than the 715, designed for specialist applications within the nuclear power industry and rarely end up on the open market. This one is part of a batch of near-mint units that I purchased several years ago. I occasionally sell them to collectors of Cold War memorabilia and experimenters on the strict understanding that they are for decorative purposes, conversation pieces or doorstops…


The price and quality of the ones on the ebay in the US tends to be fairly variable but the real problem is that they are bulky and fairly heavy, and although they often sell for $20 - $50 the cost of shipping one to the UK can easily be as much, if not more than the purchase price. The current concern over all things nuclear also means they are sometimes intercepted and confiscated by UK Customs, even though they are most definitely not radioactive or in any way restricted for sale or use. Clearly it’s not something you will ever need and even one in working condition is no more than a novelty but you might find a use for one as a stage prop or part of a Halloween costume but be warned, it’s probably not the sort of thing you should wave around in public, unless you want to cause a panic or get arrested…


First seen                      1965

Original Price                £n/a

Value Today                  £25 – £50 depending on condition

Features                        High range ionisation chamber survey meter, 0 – 500 Roentgens/hr (4 ranges), batter test & zero set functions, high quality moving coil meter display, carry handle & strap 

Weight:                          1.4kg

Power req.                     1 x 1.5 volt D-Cell

Dimensions:                   220 x 103 x 140mm

Made in:                        USA

Hen's Teeth (10 rarest):  4

Victoreen CDV-717 Radiological Survey Meter, 1965

It’s a well established fact that a whole body radiation dose of 500 rem (Roentgen Equivalent in Man) is enough to kill most people. That’s a helluva lot of radioactivity and what you might expect to receive in the aftermath and vicinity of a nuclear detonation, which is not a place you want to be, but if you were lucky enough to be in a bunker, you would probably be quite grateful to have one of these. It’s a Victoreen CDV-717 Radiological Survey Meter, thoughtfully calibrated to read up to, and including that lethal dose, but unlike most other survey meters, this one is designed to let you monitor radiation levels remotely, without necessarily exposing yourself to harmful doses.


The CDV-717 is based on the CDV-715 but with one important extra. The Ionisation Chamber, which detects the high levels of gamma radiation that survivors are keen to avoid, lives inside a detachable box. This can be connected to the main unit by a 6.5 metre (25 foot) long cable, so it can be dangled outside the shelter to take readings. This is clearly a major bonus and means you can stay reasonably safe whilst those outside are dying a horrible death, or turning into zombies – depending which experts you talk to.


Unfortunately, in the absence of a nuclear holocaust, that is just about all the CDV-717 and its ilk is good for. Almost all Survey Meters are designed to detect only extremely high levels of Gamma radiation. It’s also important to say that they are not to be confused with more sensitive instruments, like Geiger Counters, which is what they are often deliberately (and occasionally mistakenly) called on ebay, with prices to match!


A guided tour of the 717’s main features and controls doesn’t take long -- they were designed to be used by largely untrained personnel -- and there are only three items of interest on the top panel. The first is the large meter. This is a little unusual in that it’s ‘ruggedised’. Most of the meters fitted to US Civil Defence (Defense, if you’re on the other side of the pond) from the Cold War era are fairly cheap and cheerful types and do not take kindly to heavy knocks or vibration. This one is in an altogether different league. It’s housed in a metal, rather than plastic case, and the components inside are made of sterner stuff and less prone to failure and damage. It’s also waterproof and the metal case provides additional protection against the Electromagnetic Pulse (EMP) generated by nuclear weapons that can destroy electronic equipment. The controls are confined to a range switch, with positions for Circuit Check – to test the battery and electronics – and meter Zero, This is where the other control knob comes in and when the switch is in the Zero position the knob is used to set the meter to zero to ensure a (reasonably) accurate reading.


All of the electronics – an unholy mixture of technologies that includes a germanium transistor a tiny valve and some ultra high-value, high-tolerance glass encapsulated resistors – are inside the upper part of the case. To be fair it has been really well made, using top-grade parts and yes, it should survive a nuclear war. The bottom part of the case contains the ionisation chamber and a spool of coaxial connecting cable. The ionisation chamber is not as interesting as it sounds; basically it is a metal can -- around the size of a small tin of baked beans -- filled with air and a single, insulated disc-shaped electrode mounted in the centre of the container. The chamber is hermetically sealed to stop variations in atmospheric pressure, temperature and humidity affecting accuracy.


For anyone interested in how these things work here’s a quick and dirty explanation. A charge of around 50 volts, generated by the transistorised section of the circuit, is applied to the central electrode. Radioactive particles entering the chamber cause the air molecules inside to ionise, releasing charged particles or ions. Positive ions are attracted to the central electrode whilst negative ions go to the sides of the container. This creates a microscopic current that is proportional to the intensity of the radioactivity. It is amplified by the miniature valve (technically an electrometer) and the rest of the circuit is used to measure the output and display it on the meter. The really clever part is that a single 1.5-volt D cell torch battery powers everything and because the currents involved are so small, it can last for months.


Overall the standard of construction is extremely high. They must have cost the US Government a very pretty penny and upwards of 100,000 of them were made, almost all by the Victoreen Company of Cleveland Ohio. This particular one rolled off the production line in August 1965, according to a date stamp inside the case, and it probably spent most of its life in storage in Civil Defense depots or shelters. It is in virtually as new condition, still in its original box, and would only have been removed for periodic tests and calibration checks.


It came into my possession in the early 90s as part of a small consignment of CDV-700 Geiger Counters. The US seller included it as a free sample, to see if I would be interested in buying some more of them. He had several hundred up for grabs, with an asking price of just $5.00 each. In retrospect I foolishly declined the offer, mostly because they are really heavy so the cost of shipping them from the US would have been astronomical and, at the time, there was simply no market for them. Nowadays they are being sold on ebay (mostly misleadingly) as Geiger Counters for between £50 ands £150, but ignoring the fact that they are next to useless for anything radiological, the vintage parts inside the case are now worth more than a few bob to vintage tech enthusiasts. Hindsight is a wonderful thing…   


What Happened To It?

When the Cold War was finally declared over, some time in the 80s, the US Civil Defense either destroyed or sold off its vast stockpiles of 60’s and 70s Geiger Counters and Survey Meters. Where necessary they were replaced by smaller and more accurate and reliable, modern instruments. (That’s open to debate and ironically, modern instruments, reliant on microchip technology, are much less likely to survive the EMP of a nuclear blast). However the iconic yellow CDV-700, 715 and 717 models live on and continue to be the go-to stereotypical Geiger Counters for Hollywood movies and TV series. I’m always amused when they ‘tick’ as none of them ever had any sort of built in speaker.


The CDV-700 model is a genuinely useful and surprisingly sensitive instrument but the best thing you can say about these old Survey Meters, from a practical point of view, is that they make half decent doorstops. Tragically they also end up butchered, as table lamps, or dissembled and used as dog bowls and ashtrays. Hopefully there will never be a time when they can be used in anger, but I’m hanging on to mine, just in case…   


First seen          1965

Original Price   £ a lot!

Value Today     £50 (0116)

Features           Detachable ionisation chamber radiation sensor, remote cable connection (6.5 metres/25 feet), 3 ranges  (0-0.5, 0-5, 0-50 and 0-500 r/hr), ruggedised meter, battery/circuit check functions, meter zero & range set controls

Power req.                    1 x 1.5 volt ‘D’ cell

Dimensions:                   220 x 160 x 115mm

Weight:                          2.3kg

Made (assembled) in:    USA

Hen's Teeth (10 rarest):  7

CD V-742 Pen Dosimeter & CD V-550 5b Charger, 1962

Here’s another relic from the Cold War era of the 50s, 60s and 70s and once again, it’s not the sort of thing you would ever want to see actually working because it would almost certainly mean that the balloon has gone up, and you are hunkering down in a fallout shelter…


The CD V-742 is one of a range of pen dosimeters, elegantly simple little devices that measure how much X-Ray and Gamma radiation the wearer has been exposed to. This particular model is a high range type with a range of 0 – 200 Roentgens; others, like the CD V-730 and 740 had ranges of 0 – 20 and 0 - 100 Roentgens respectively. These days the Roentgen has been largely replaced by the Sievert as a measurement of radioactive dose but to put that scale into perspective, exposure to 500 Roentgens over a period of several hours is usually lethal. In theory one of these could come in quite handy if you somehow managed so survive a nuclear attack but in practice if your CD V-742 ever showed any sort of reading you were probably a goner…


It is very easy to use and all you have to do is pop one in your top pocket and leave it there while you go about your radioactive business. Basically it’s a sealed metal tube with a transparent window at one end, with a central electrode, and an eyepiece lens at the other. Inside there is a fine quartz whisker, mounted above a small screen engraved with the aforementioned Roentgen scale. Before use the dosimeter has to be zeroed, and this is where the yellow CD V-750 charger unit comes in. The 742 is pressed down on a spring loaded button in the top left hand corner; this simultaneously lights up a small torch bulb inside the case and applies a 200 volt charge to the central electrode. The user peers down the tube to read the scale and by turning the knob on the top right of the case, the whisker can be moved to the zero position and it is ready to go. 


Gamma radiation penetrating the tube has the effect of dissipating the charge, causing the whisker to move up the scale in direct proportion to the level of radioactivity. In normal use the dosimeter would be read at the end of the day or shift, to determine how much radiation the wearer has been exposed to, and if the reading was really high, it was time to start planning for an early retirement…


Hundreds of thousands of dosimeters and chargers were manufactured from the mid fifties to the mid sixties for the US Civil Defence corps and distributed to the nationwide network of shelters and control centres. Dosimeter pens and CD V-750’s were made by several companies on money no object contacts for the US Government, including Bendix, Jordan, Universal Atomics and in the case of this one, the International Electronic Hardware Corporation. The charger is sturdily made, strong enough to survive an atomic blast in fact. It is powered by a single standard D Cell and there’s even a spare torch bulb inside. Although they are more than 50 years old both devices appear to be in full working order, though in the absence of any highly radioactive sources to test it on, that has to be taken on trust…


What Happened To It?

The CD V-742 and 750 shown here are part of a batch I acquired a few years ago as part of a US Government clear out of old stock. Such is the simplicity and reliability of the design that pen dosiumeters are still being made to this day, for use in the nuclear industry and military applications. The basic design has hardly changed over the years, though there are many variations on the theme, including a wrist-worn version, which until recently was standard issued for NATO armed forces.      


For years old pen dosimeters and chargers like these sold on ebay US for a few dollars and were mainly bought for their novelty value and by collectors of Cold War ephemera. They have little or no practical use but there was a huge spike in demand, and a tremendous price hike, following the Fukishima accident in 2011. Sad to say they were mostly misleadingly sold as personal radiation monitors, and purchased by people frightened by the scary news reports coming out of Japan but it’s doubtful that a 742 would have read anything, further than a few tens of metres away from a damaged reactor. Things have settled down and although prices haven’t fallen back to pre-Fukishima levels, you can find dosimeter and charger sets on ebay, often in ‘as-new’ condition for less than £30; pens on their own cost around £5.00. It’s probably not the sort of thing you would want to go out of your way to buy, but who knows? If they ever drop the big one prices are bound to go up and you would be glad to have a few of them handy, for throwing at zombies and the three-headed wolves roaming the post apocalypse wasteland…



First seen                       1962

Original Price                £n/a

Value Today                  £25

Features                        CD V-742 quartz fibre indicator, 0 – 200 Roentgens. Illuminated press to charge contact, zero set control, spare bulb

Weight:                          CD V-742 22g, CD V-750 420g

Power req.                     CD V-742 n/a, CD V-750 1 x D Cell

Dimensions:                   CD V-742 112 x 9mm, CD V-750 104 x 104 x 68mm

Made in:                        USA

Hen's Teeth (10 rarest):  6

Wallac Oy RD-5 Geiger Counter, 1963

For a country that’s practically next door to Russia and one of the planet’s largest stockpiles of atomic weaponry, not to mention a country with a patchy history for the safety and integrity of its nuclear power stations, it comes as a bit of a surprise to learn that Finland isn’t better known as a manufacturer of Geiger Counters.


In fact there appears to have been only one of them, a company called Wallac Oy, which is now part of US-owned PerkinElmer Lifesciences.


This RD-5 is one of what I believe to be a small range of radiation monitors, produced in the 1960’s at the height of the Cold War and judging by the almost complete lack of information regarding this, and other Wallac products from the sixties, it appears that not many of them were made or it wasn’t around for very long. Either way this seems to be one of the very few to have survived, or escaped into the public domain.


It deserves to be better known, though as it was a competent and rugged instrument, designed to cover a wide range of radiological measurements, from very low-level contamination to fry-your-brains, zombifying fallout and at its heart is a Geiger Müller detection tube called the MX-142. This was manufactured by Mullard (part of the Philips group), and it is quite unusual because it is sensitive to the three main types of radioactivity, known as Alpha, Beta and Gamma. The vast majority of Geiger Counters can detect Beta and Gamma radiation, because of the energy and penetrating power of the particles and waves, but Alpha radiation, by comparison, is extremely weak. So weak, in fact, that it cannot travel more than a few centimetres through the air, and it can be blocked by a thin sheet of paper. This makes it rather difficult to detect, as it would be blocked by the metal or glass enclosure of a Geiger tube, (they are sealed and contain an exotic mixture of gasses that react to the ionising properties of radioactive particles). The solution, used on the Mullard MX-142 and most other Alpha-sensitive GM tubes is to fit a very thin window to the end of the tube, made from the mineral Mica. This still blocks some Alpha radiation, but enough of it gets through to be measured. When not in use the GM tube, which is on the end of a curly cable, stows away in a compartment on the rear of the case.


It is possible that this model came equipped with one or two extra tubes. There is a tube-sized compartment on the rear of the case and if so they were likely to be high-range types, better able to cope with high levels of radioactivity, that would otherwise swamp or saturate a sensitive tube like the MX-142. One other item of interest is the hybrid electronic circuitry. There is a pair of transistors in the low voltage portion of an oscillator circuit, used to generate the 500 or so volts needed to power the GM tube; there’s also a DL-67 sub-miniature pentode valve for the audio and meter circuits and a bank of six XC-12 85 volt voltage regulator tubes. Valves and transistors usually make poor bedfellows as they operate over widely differing voltage and temperature ranges, but this sort of arrangement was not unusual back in the early 60s, when transistors were just starting to be reliable enough to be used in safety critical devices like this, but could not, as yet, replace valves in applications involving very high voltages or currents.


Operationally it is very easy to use; there are only two controls, a rotary on/off range switch and a toggle switch for selecting the internal speaker or external headphone sockets (banana type). There is also a pair of banana sockets for an external 3VDC power supply. The unit is powered by two 1.5 volt D cells, which fit into two tubular compartments on the front of the case. The speaker is mounted beneath the angled carry handle on the top of the case. Readings are displayed on an unusual analogue meter with a 270-degree movement. The dial is illuminated by a tiny and sadly, long-deceased bulb, a type that apparently hasn’t been made for more than 30 years. It is housed in a tough all-steel case and although it’s looking a bit battered now, with a few small patches of surface rust, there is no doubt that it could survive for another 50 years.


I stumbled across this one, at a large open air antiques fair in Surrey; it was in amongst a pile of what looked like scrap metal, in a pretty sorry state and the stall holder seemed quite happy with the £5.00 that I offered for it. It was a gamble and there is only so much you can check on a Geiger Counter that clearly hasn’t been used in decades, with an old, and leaky battery stuck in the holder tube. There was also no way to check the GM tube, apart from a visual inspection of the mica window and if that had been broken or cracked my offer price would have fallen to 50 pence as they are nigh-on irreplaceable.


It looked a lot worse than it actually was and once the battery had been extracted it was clear that there was only light corrosion on the battery contacts. I didn’t dare power it up, though. Any faults on the circuit board would, like as not, have blown the delicate germanium transistors and diodes, so – and this is now routine on any early 60s gadget passing through my hands – it was treated to a new set of electrolytic capacitors and a thorough circuit check, looking for obvious shorts, open circuits and dry soldered joints. I was a little disappointed that it didn’t fire up straight away but I hadn’t taken into account the valve circuitry, which takes a few moments to get going, after which some reassuring ticks came from the speaker. The meter remained stubbornly inert, though but a quick dab of the soldering iron on a dry joint on one of the meter wires got it moving again. Not surprisingly the GM tube seems to have lost some of its youthful vigour and alpha sensitivity is mediocre but it responds well to beta and gamma sources. It is by now far beyond accurate calibration, but it works, and that’s clearly a remarkable achievement for such an ancient instrument, so hats off to the designers and manufacturers.


It was just as well that it worked, troubleshooting such an idiosyncratic circuit would be a nightmare. Fortunately there was the majority of a circuit diagram folded in the bottom of the case, though the middle part had rotted away. It was actually for an RD-7, presumably a later model, though I was able to determine that the key parts of the two circuits are almost dentical, but the missing portion will have to remain a mystery unless someone out there has an intact copy.


What Happened To It?

I have been unable to find out anything about Wallac’s activities in the 60s or the RD-5, beyond a few citations in scientific publications where it had been used to take measurements. The simple controls and rugged construction suggest that it may have been designed for the military, which might also explain why there are so few of them around today -- in fact I have never seen another one -- so if anyone can fill in the gaps I would be very pleased to hear from them.


It’s present value is impossible to gauge; the market for vintage Geiger Counters is tiny, in fact there are probably only a couple of dozen weirdos, like me, in the world, who covet them and I doubt if any of them could be persuaded to pay more than £50 for one, even if it is in fairly good shape and semi-working order…

GIZMO GUIDE (Manual -- partial circuit diagram)

First seen               1963 (1014)

Original Price         £?

Value Today           £50

Features           Alpha, Beta, Gamma-sensitive mica window Mullard MX-142 Geiger Müller tube, ranges 0 – 10 & 0 - 200mr/h, internal speaker with headphone output sockets, external power socket, 2 transistors (OC72 & OC74), 1 x DL-67 sub miniature pentode valve, 6 x XC12 voltage regulators

Power req.                    2 x 1.5 volt D cells

Dimensions:                  245 x 150 x 100mm 

Weight:                         2.7g

Made (assembled) in:    Finland

Hen's Teeth (10 rarest):  8

Plessey PDRM-82 Portable Dose Rate Meter, 1982

The Plessey PDRM-82 was a standard issue radiation monitor for UK military, emergency and Civil Defence services in the 1980s; rumour has it that it may still be current for some NATO forces. In theory it could actually be quite useful, provided the user is one of the lucky(?) ones still alive after a nuclear detonation... Over the years a lot of these instruments have found their way into civilian hands but they are often misleadingly described as Geiger Counters, usually with the implication that they could somehow be used in health and safety applications, detecting low to moderate levels of radioactivity. Worse still, a great many of them were sold on that basis to concerned citizens following the Fukishima nuclear power station incident in 2011, often at vastly inflated prices. The fact is, unless the user was standing within a few metres of the damaged reactor it is highly unlikely that the display would register anything. That’s because the PDRM-82 is a very high range dose meter and only capable of reading near lethal levels of radioactivity, far above anything that any normal person, outside of the nuclear industry, would ever be likely to encounter.


That said, this is actually a rather interesting device and uncharacteristic of a lot of post WW 2 military hardware, which tended to be clunky, reliant on old technology and frequently unreliable. To begin with it is surprisingly small, and in stark contrast to the big, unwieldy radioactivity detecting devices issues to troops in many other countries. Most other instruments of that era, like the classic US CD V-700,relied on analogue moving coil meter displays to show radioactive levels; this one has a large 4-digit LCD display, and remember this was the early 1980s and LCDs had only been around for a relatively short time.


There are more surprises; it uses an early microcontroller chip, to operate the display, run a self-test routine at switch on, monitor the circuitry and battery level, and compensate for the characteristics of the Geiger Muller tube detection device. This was all pretty advanced stuff back then, especially on something that was (a) expected to survive a nuclear explosion and (b) used in what would undoubtedly be a hostile and challenging environment, by largely untrained personnel. The requirement to be rugged, in this case, goes far beyond being able to endure a bit of battlefield rough and tumble; it needs to be able to withstand an EMP or Electromagnetic Pulse. This is a high intensity burst of energy, generated by nuclear weapons, which can destroy some electronic components, tens of kilometres distant from the explosion. The PDRM-82 is apparently hardened against EMP – it’s not a claim that can be easily tested; what is more certain is that the plastic case, display and battery holder are well waterproofed and designed to be easily decontaminated. As an added bonus it requires no routine maintenance or calibration, runs for up to 400 hours on a set of 3 standard C cells, and was designed to have a 20-year operational life.


The only downside to the PDRM-82, apart from the fact that it is virtually useless, is that the readout is calibrated in units of radiation dose known as ‘Grays’ (Gy). It is borderline archaic and almost no one uses Grays anymore (for the record 1 Gray is equivalent to 100 Rads, which probably still doesn’t tell you very much…). The PDRM-82 has a working range of 0-300 centigrays (1 centigray equals 1 Rad, in case you were wondering), but without knowing about such sciency things as absorbed radiation dose, dose equivalents, and the ability to relate that to more widely used units of radioactive dose and contamination, the average squaddie or civil defence volunteer would probably have been hard pressed to say how many centigrays means get the hell out of there. In fact the only real indication that things are getting a bit hairy is the display, which flashes when it reaches 300 centigrays per hour. The lack of any audible or more attention grabbing warning indicator suggests that it could be possible for an unobservant user to wander into extremely dangerous, highly contaminated areas, without knowing a thing about it.


What Happened To It?

As the stockpiles of the PDRM-82 reached the end of their operational lives they were either scrapped or sold off, usually in Government military surplus auctions and for 10 years prior to the Fukishima accident you could pick them up for a few pounds, usually unused, as new and still in their original cardboard box, along with the accompanying strap, lanyard and instructions. I have bought and sold quite of few of them over the years and was always careful to point out that they were pretty much useless, though I did once manage to get one to read close to normal background levels of radioactivity by changing the Geiger tube to a more sensitive type. It wasn’t a practical mod, though, the microcontroller took exception to the alien tube and the LCD display was meaningless. Given sufficient time and expertise I suspect it may be possible to convert and reprogram it to do something useful, but quite honestly, unless you had access to large stocks of them it simply wouldn’t be worth the effort.  


PDRM-82s continue to sell on ebay for stupid amounts. I would say £10 to £20 would be a fair price for someone collecting Cold War memorabilia to pay but I have seen them go for more than £150. This is almost always due to the seller suggesting it is a practical radiation measuring instrument. Sometimes it is a genuine mistake and due to lack of knowledge, but I suspect that more often than not the seller knows full well its capabilities and is just trying to make a fast and dishonest buck. This also suggests that there may be a lot of people out there checking the readouts on their PDRM-82s every time they hear of a nuclear accident or spill somewhere in the world. On the plus side, they are never going to be unduly alarmed as it is probably always going to read zero...



First seen         1982

Original Price   £250

Value Today     £20

Features           High dose survey meter, halogen quenched Geiger Muller tube detector, 4-digit LCD display, detection range 0-300 centigrays/hour (cGy/h) in 0.1 cGylh increments, +/-20% accuracy display flash at 300 cGy/h, self test. 

Power req.                    3 x 1.5v C cells

Dimensions:                  170 x 140 x 55mm

Weight:                          400g

Made (assembled) in:    England (Poole, Doset)

Hen's Teeth (10 rarest):  5


Kvarts DRSB-01 Radiation Monitor, 1988

Strictly speaking the manufacturing date for the Kvarts DRSB-01 pocket radiation monitor is mid 1992, however, this one is the later Mk 2 version, and the Mk1 (on the left in the picture below), was where it all began, a couple of years after the terrible Chernobyl nuclear reactor accident in April 1986. That’s enough of the history lesson, suffice it to say this is just one of several personal radiation monitors manufactured in the former USSR, in response to widespread public concern over radioactive contamination.


Technically it is fairly unsophisticated, basically just a ‘ticker’ -- as they came to be known -- and that’s pretty much all it does in response to a source of radioactivity. It is definitely not a Geiger Counter, as they were frequently and misleadingly described, for the simple reason that it doesn’t count anything. In fact there are no displays, just a pair of LEDs. The green one, marked ФОН indicates normal background radiation with the occasional flash (and accompanying tick), whilst the red one, labelled ВНИМАНИЕ means ‘Attention’ and when you see that light up, you know it’s time to get the hell away from whatever is making it flash and tick!


Radioactivity is detected by a Russian-made SBM20 Geiger Müller tube – they’re the brass-coloured cylinders in the photograph. In the world of radiation monitoring this is a bit of a classic, noted for being small, remarkably sensitive and, at one time, incredibly cheap. A lot of them have been made over the years and they are still being used in many modern radiation detecting instruments. The SBM20 is sensitive to the two most hazardous forms of radioactivity: Gamma, which is the nasty and most dangerous sort, and Beta, which is a lot less damaging, though you still wouldn’t want to keep a source of it in your underpants…


You may have noticed that the Mk1 version has two SBM-20 tubes, and this made it very sensitive, possibly to the point where it was producing too many false alerts, or it was just a cost-saving measure, either way the Mk 2 only has one tube and it is unlikely that most users would have noticed, but it was a great shame for the small band of Geiger Counter enthusiasts in the west.


During the mid 1990s a great many surplus DRSB-01’s were being sold across Europe and the US, often for just a few pounds; the first ones I bought cost less than £10 each. Most of those sold in the early days were the twin-tube Mk1 version and they were bought in considerable numbers, by experimenters and even some companies, essentially for the SBM-20 tubes. Apart from their high sensitivity and military grade build quality they cost a fraction of the price of Geiger tubes made in the west, which tended to be less sensitive, needed more elaborate circuitry and in many cases were encapsulated in glass, which made them extremely fragile.


Back now to the DRSB-01, and as you may be able to see from the internal photograph, there’s not much to see. The plastic case is simply and cheaply made and it is powered by a pair of AA cells, which can last for several weeks. The lower half of the circuit board is responsible for generating the 300 or so volts needed to power the GM tube (the black cylindrical component in the bottom right hand corner is a ‘toroidial’ high voltage transformer); the upper half is concerned with detecting pulses from the tube, driving the two LEDs and generating the ticks from a piezo sounder. It is a characteristically messy design, with loose wires and tacked on components – typical of state-owned Soviet factories in the 80s and 90s – but it works, and they were surprisingly reliable.


What Happened To It?

There’s not a lot of information available on the Kvarts factory, prior to the breakup of the Soviet Union, but I am fairly certain that they were involved in the manufacture of military equipment; later they went on to become a leading maker of scientific instruments; their present status is unknown. The DRSB-01 appears to have been in production until at least 1995, by which time it was it had become rather dated and despite a facelift, with those snazzy yellow and orange stripes on the front panel (the Mk1 has a very plain appearance) consumer demand had long since tailed off.


I bought a fair few DRSB-01s and other Russian made instruments, like the DRSB-88, DRSB-90 and Biri-1 during the late 90s and early noughties. Prices were incredibly low to begin with and I resold a few of them on ebay at a small profit for £20 to £25 but as stocks started to run out Russian suppliers put up their prices and they virtually disappeared from view, until the Fukishima accident. Quite a few turned up on ebay, presumably from old Soviet stockpiles, often for ridiculous amounts of money and I remember several being snapped up for more than £100 but supplies ran out very quickly and in the last few years they have become quite rare.


It is difficult to say what sort of money they might fetch nowadays, though one thing is certain, it is nothing like those mad post Fukishima prices. No one would seriously consider using one as a radiation monitor but they could have a certain novelty value and might appeal to collectors of Soviet era technology. If nothing else they are worth at least as much as the SBM-20 tubes they contain (currently around £10 - £15 apiece), so the Mk 1 version is the more desirable, and providing it is in good working order £10 - 30 might be a reasonable price  



First seen               1988

Original Price         £?

Value Today           £10 - £100

Features           Hard Beta/Gamma sensitive SBM-20 Geiger Müller detection, built in sounder. Dual LED display (‘Background’ and ‘Attention’), on/off switch

Power req.                     2 x 1.5v AA cells

Dimensions:                   150 x 65 x 23mm

Weight:                          118g

Made (assembled) in:    Former USSR

Hen's Teeth (10 rarest):  7

Kvarts DRSB-90 Geiger Counter, 1988

Following in the wake of the Chernobyl nuclear reactor accident in 1986 Soviet factories previously engaged in churning out military kit and scientific instruments quickly adapted to manufacturing vast numbers of cheap and simple to use radiation monitors. One of the most prolific was Kvarts, a Ukrainian enterprise the developed a series of innovative, sensitive and surprisingly robust personal Geiger Counters and dosimeters. Public concern eventually abated and large stocks of these instruments began to build up. After the collapse of the Soviet Union and growth in foreign trade, a small but steady stream of Russian Geiger Counters started to find their way to the west.


Most of these instruments were fairly basic and in truth only capable of alerting the user to dangerously high levels of radioactivity. This meant that that they were of little practical value though they had a certain novelty appeal and would occasionally click and tick in response to natural background radiation, but there were exceptions. This is one of them; it’s the DRSB-90 and it is a true Geiger Counter in that it uses a Geiger Müller tube for detecting beta and gamma radiation, and a circuit that ‘counts’ the clicks and displays the result on an analogue moving-coil meter.


Thanks to its SBM-20 Geiger tube it is actually quite sensitive and readily responds to low level sources, including naturally radioactive minerals like granite (you would be surprised how lively some roadside kerbstones can be…), as well as other everyday objects, like old (pre mid 50s) clocks, watches and compasses with luminous, radium-painted hands and dials, antique ceramics (Red Fiestaware) and glass (Vaseline, Depression, Uranium), doped with Uranium to give it a characteristic lustre in sunlight. It also surprises a lot of people that salt substitute (Lo-Salt, Nu Salt etc), contains small but detectable amounts of radioactive Potassium K40.


Operation is relatively straightforward, once you have figured out the control labelling, which is in Russian. One of the exporters supplied sticky labels, with the functions translated into English, but it was always a bit of a turn-off for some users. For the record there are three slide switches; the large one is for power on/off and battery check – shown on the meter. Next to that is a two position range switch (x1 or x10), and below that a slide switch for muting the built in piezo sounder, which ‘chirrups’ with each detected event, and emits a continuous tone when the alarm threshold is exceeded. There are also two buttons, one for a small light to illuminate the meter at night and the other is for ‘dumping’ or zeroing the meter. The latter is because it uses a simple ‘integrating’ counter circuit that displays an accumulated reading over a period of around one minute. If the source of radioactivity is removed the meter needle falls only very slowly, so it is necessary to press the dump button before a new reading can be taken. It is powered by three AA cells and these can last upwards of 200 hours with continuous use.


The meter is also labelled in Russian but it is reasonably easy to figure out. The top scale is in microsieverts per hour (0 – 3), whilst the lower one shows microroentgens per hour (0 – 300), both of which are widely used and readily understood international units of radioactivity and radiation dose. Comparisons with a modern instrument, using a calibrated check source, shows that the DRSB-90 remains reasonably accurate, and still perfectly capable of warning the user to step smartly away from whatever is making it chirp…  


Build quality is unsophisticated but it is pretty robust and typical of what was coming out of Russian factories at the time. There are some nice old fashioned touches, like the neatly tie-bundled wiring loom, and moisture proofing around the high voltage components is taken care of by the old Russian trick of coating everything in a thick layer of goopy wax; don’t mock, it works! Over the years I have bought and sold several dozen DRSB-90s and still get the occasional enquiry but I will be hanging on to this, my last remaining sample, which still works perfectly.


What Happened To It?

When they first became available in the late eighties, the DRSB-90 was at the high end of the price range for Russian radiation monitors. They typically sold for £20 - £25, which wasn’t a lot, even then, for what is still a relatively sophisticated instrument. The problem was you could pick up cheap and cheerful ‘clickers’, like the DRSB-88 for around a fiver, and with no immediate threat from radioactive fallout, it was no contest. They probably didn’t sell in very large numbers and the Russian labelling on the controls and rather old-fashioned design didn’t help. As supplies dried up the prices rose a little but eventually they disappeared, apart from the occasional sighting on ebay during the nineties and early noughties, where they would typically go for £40 - £50. For the past few years, since the Fukishima accident in fact, prices have soared and the last time I saw one on ebay it fetched almost £200!  It’s clearly not a frontline collectible but should one ever cross your path, it still works and the price is the right side of stupid, I would grab it, because you never know when another radioactive incident is going to send prices spiralling…



First seen                      1989

Original Price                £25

Value Today                  £80

Features                        SBM-20 GM tube (hard beta/gamma sensitive). 2 x LED display (orange ‘event’, red alarm), audible bleep/alarm, 12-transistors, 1 x colortron voltage regulator, moving coil meter, power on/off/batt test, range switch (x1/x10), meter backlight, audio mute, meter ‘dump’,

Power req.                     3 x 1.5v AA cell

Dimensions:                   147 x 70 x 30mm

Weight:                          155g

Made (assembled) in:    USSR

Hen's Teeth (10 rarest):  6

Kvarts DRSB-88 Radiation Monitor, 1989

This little device would have been familiar to anyone living in what used to be the Soviet Union towards the end of the 1980s and early 90s. It’s a pocket radiation monitor and hundreds of thousands, possibly millions of them, were produced, and sold or distributed to Russian citizens in the wake of the Chernobyl disaster in 1986.


The threat of radioactive fallout from Chernobyl accident produced considerable public alarm and it was hoped that cheap and simple instruments like this would give the public some reassurance that they weren’t about to be exposed to dangerous radioactive contamination. As it turned out it wouldn’t have done users much good, unless they were living uncomfortably close to the exclusion zone. This was due to it’s tiny Geiger Muller tube detector, which isn’t very sensitive and almost certainly incapable of detecting emissions from fallout further than a few tens of kilometres from the stricken nuclear plant.


Nevertheless, it was, and still is a working radiation monitor and will register relatively low-level sources when held against the detection window on the side of the case. These include things like old watches and clocks that have luminous radium painted hands and dials, ‘lively’ minerals and old thorium doped gas mantles.


It is very easy to use, just pop in a single AA cell, which can last anything up to two weeks, and switch it on. When the GM tube detects a source of ‘hard’ beta or gamma radiation the red light on the top flashes and a tiny built in speaker emits a characteristic click.  The electronic circuit inside the case use a bizarre mixture of components and crude construction techniques, but that was hardly surprising with a selling price of only £5.00 or so. The circuit has just three transistors; one is used in conjunction with a toroidial transformer and a simple voltage multiplier (daisy-chained capacitors and diodes) to generate the 400 volts needed to power the tube, and the other two are responsible for amplifying the click and blinking the light on the top. The latter is an especially weird component, and as best I can make out, a cross between a neon bulb and a corona type voltage regulator tube. But it works, which is what matters, and that is in spite it apparently being assembled in a tractor factory – which it probably was -- with no detectable quality control procedures.


The DRSB-88 was one of several models produced by Kvarts, which, prior to Chernobyl was mostly involved in manufacturing scientific instruments and radiation monitors for the Soviet military It’s a very far cry from the standard of construction of products then coming out of Hong Kong and Japan. For example, the way the designers got around the problem of keeping moisture out of the way of high voltage components clearly betray it semi-agricultural Soviet origins. On a similar western or far eastern product the first line of defence against water getting into the works would be to put it inside a water resistant case. The Kvarts solution, which is elegantly simple and works brilliantly, is to coat the whole thing in goopy wax. It’s very effective, and only becomes a problem if anything goes wrong as the thick wax makes it nigh on impossible to repair.


What Happened To It?
Until the mid nineties DRSB-88s were rarely seen outside of Russia. Production had stopped by then but it appears large stocks of surplus units had built up. These came into the possession of budding Russian entrepreneurs and they started selling them in the west, initially through specialist exporters and later on ebay. There really wasn’t much of a demand, though, and at that time I was able to buy them in quantity for as little as $10 each. However, they could be made a lot more attractive to hobbyists and experiments and with a little fiddling around converted into practical Geiger Counters. All you had to do was fit a jack socket to the case and wire it up to the speaker, via a decoupling capacitor. Connect by cable to the audio input of a PC or laptop and run a simple freeware program that counted the ‘clicks’ and generated a counts per minute (CPM) display. In this way you could detect very low levels sources of radioactivity, including changes in background radiation, by taking measurements over periods of a few minutes to several hours.


Sadly the supply of ultra cheap DRSB-88s eventually dried up and by the early noughties the few that were still around were selling for between £30 and £50 on ebay. By the time of the Fukishima disaster, in 2011, the price of all radiation monitors had shot through the roof and on the odd occasion that a DRSB-88 appeared on ebay it would fetch £100 or more. Things have calmed down a lot since then and Geiger Counter prices have come down. Second hand DRSB-88s come up for sale every so often but they are almost always non-working. It’s not the sort of thing collectors of vintage electronics are likely ever to be interested in, nor does it stack up well against more recent radiation monitors, but it could be in great demand once again, if there is ever another nuclear accident, though if you do have one, I wouldn’t rely on it too heavily to keep you out of danger…



First seen                      1989

Original Price                £5

Value Today                  £30?

Features                  Hard Beta/Gamma sensitive SBM-10 Geiger tube,, audible and visual indicators, on/off switch

Power req.                    1 x 1.5v AA cell

Dimensions:                   133 x 36 x 28mm

Weight:                          55g

Made (assembled) in:    Former USSR

Hen's Teeth (10 rarest):  7

Biri-1 Keychain Radiation Monitor, 1987

On April 27th 1986, my wife Jane and I were in the USSR, as was, preparing to return to the UK from a short trip. It was an exciting time to be in the country and a real sense of change was in the air. Reforms made by Mikhail Gorbachev were starting to have an impact on the tightly controlled Soviet state and media, though to a visitor, it still felt very isolated. What news there was tended to be bland and highly filtered so we didn’t pay much attention to vague reports of an industrial accident the previous day, somewhere in the Ukraine. It wasn’t until we returned to Gatwick the following morning, and upon landing our plane was directed to a remote corner of the airport for quarantine and the possibility of radioactive decontamination, that we learned what had happened…


Everything changed following the Chernobyl disaster. Nuclear power’s mostly benign image was tarnished forever and the lack of information meant it was a fearful time for the Soviet people and those caught up in the accident, which brings us to the Biri-1 keychain dosimeter. It was one of a number of personal radiation detectors produced in the USSR in the wake of Chernobyl and sold to concerned citizens. They were made in large numbers, mostly by state-owned factories involved in manufacturing monitoring equipment for the military.


The Biri-1 is no larger than a slim box of matches and for its size it is surprisingly sensitive. The radiation sensor is a tiny SBM-10 Geiger Müller tube just 28mm long, able to detect both beta and gamma radioactivity. The tube is powered by a simple high voltage circuit that produces a charge of 400 volts; when a radioactive particle or ray enters the tube it ionises a mixture of gasses, generating a tiny pulse that is amplified and processed to flash a red LED on the top and a chirrup like sound that merges to a constant squeal when the radiation level rises to potentially hazardous levels. It is a really clever design; the high voltage circuit ‘pumps’ the Geiger tube to constantly top-up the charge, and this is used to create a regular low-level ‘tick’ that indicates that the device is working. The high voltage transformer doubles up as an audio transducer and a small metal plate, attached to it by a screw, acts as a baffle to amplify the sounds.


Build quality is a typical of Soviet era gadgets. Outwardly it appears fairly crude – compared with slick Japanese made devices of the period. The on-off switch on the rear is a particularly poor design and prone to failure, and the high voltage areas of the circuit board are coated in a wax-like substance, which provides protection against the ingress of moisture and stops the components moving around, but apart from the switch, it still works well after more than 30 years. The other shortcoming is the batteries; it comes with a pair of rechargeable button cells, which have a tendency to leak after a few years, but the biggest problem is the mains charger. This is a dreadful design and in addition to having a badly fitting battery cover and terminals that corrode easily, it gets really hot, falls apart easily and is potentially lethal. Fortunately there is a near equivalent alkaline cell (LR9) that fits snugly into the Biri’s battery holder and can keep it powered continuously for a week or more.      


What Happened To It?

I first came across the Biri-1 in the late 1990s when surplus stocks were being sold by a Russian entrepreneur for around $20 each. Over the next few years I bought a number of them and they proved to be very reliable. Gradually the supply dried up and they disappeared from view, though recently a US company had a few NOS (new old stock) Biri-2s for around $40. These were basically the same as the Biri –1 but with modified case cosmetics, though sadly these now seem to have run out but they do still turn up occasionally on ebay.


Following in the wake of the Fukishima accident quite a few companies have been knocking out personal radiation detectors and it has to be said most of them are over-priced rubbish and virtually useless for meaningful monitoring of the very low levels of radiation they are supposed to warn against. This old Biri-1 wipes the floor with many of them and at close quarters responds to relatively weak sources, such as uranium doped Vaseline glass, the radium-pained luminous watch and clock hands and dials that were common before they were banned in the 1950s and even the naturally occurring uranium in granite kerbstones is enough to get a few chirrups.


As a radiation safety device it is of questionable value but it is certainly a conversation piece and a handy thing to have about your person if you are into urban prospecting, rock hunting or antique collecting. Just keep it well away from anyone undergoing radiotherapy investigation or treatment, it will scare the pants off you both…



First seen                        1987

Original Price                 £?

Value Today                   £40

Features                         SBM-10 Geiger Müller tube, audible clicker/alarm, LED indicator

Power req.                      2 x A-06A rechargeable cells (western alkaline equivalent LR9)

Dimensions:                   65 x 35 x 12mm

Weight:                          30g

Made in:                         USSR

Hen's Teeth (10 rarest):  7

Staticmaster Polonium 210 Anti-Static Brush 1978

Here’s a truly weird, wonderful and rather appropriate gadget from the late 1970s with some bizarre contemporary connections. It’s an anti-static brush, used to de-dustify things like vinyl records and photographic film.


So far so ordinary, but there’s a few things about the Staticmaster that makes it rather interesting. Firstly it’s radioactive, that’s right, if you look closely, just behind the bristles you can see a small grating with some brown material deposited on the surface.


This is the radioactive element and it creates a ‘field’ of ionised particles up to an inch or two ahead of the bristles and this has the effect of neutralising the static charge that makes dust stick to surfaces.


Here’s the second surprise, the radioactive material used in the brush is none other than Polonium 210, the same stuff used in the recent horrific poisoning incident that resulted in the death of the Russian ex-KGB agent Alexander Litvinenko.


Polonium 210 emits alpha particles. These are very weak and cannot penetrate skin so they are relatively ‘safe’ in the contained environment of the brush head. It is also significant that Polonium 210 has a half life of 139 days, which basically means that virtually all of the radioactivity disappears within a couple of years of manufacture, as the polonium turns into an inert isotope of lead, so these old brushes are now completely harmless.


The alpha particles emitted by Polonium 210 become dangerous when ingested into the body in liquid form or in very fine particles in quite significant qualities so before you ask, you would need a great many brushes, some pretty sophisticated equipment and very specialised knowledge to create anything dodgy from them.


What Happened to It?

Here’s another surprise, they’re still being made, and this is the only legal way you can obtain Polonium 210. The brush shown here was made in 1978 by a US company called Nuclear Products. Nowadays they are manufactured, along with a wide range of industrial and consumer anti-static products by Amstat Industries.



First seen:                         1965

Original Price                   £8.00

Value Today?                   £2

Features:                          Radioactive anti-static brush  
Power req.                        n/a

Weight:                             100g

Dimensions:                     125 x 30 x 20 mm

Made in:                            USA

Hen’s Teeth (10 rarest):   1

P.H. Ltd Spinthariscope, 1970?

This rather disreputable looking object is definitely not something you see every day. It’s a Spinthariscope, and the idea is you look through the eyepiece and watch atoms splitting, really!


The Spinthariscope was invented back in 1903, by William Crookes and for most of the past 100 years they have been regarded as interesting novelties and educational toys. This one, which I believe dates from the late 60’s was designed for use in schools, which explains its rather battered appearance. The reason you don’t see them very often is because inside there’s a speck of radioactive material, 0.02 micrograms of Radium to be precise.


It all sounds a bit scary but the fact is, the Radium source is miniscule, less radioactive than the sensors in most household smoke detectors, and a magnitude less than old watches and clocks with luminous hands but anything labelled as radioactive these days worries a lot of people…  See my anythingradioactive site for a basic guide to radioactivity and – shameless plug – lots of cheap Geiger counters and nuclear novelties.


The Radium source shoots out alpha particles, and if you know anything about radioactivity you’ll know these are the weakest sort, barely able to penetrate a sheet of paper (though you certainly wouldn't want a lof of them inside your body...), but the point is none can escape from the cannister. 


Inside the tiny piece of Radium is mounted on a small spike in the middle and beneath it there’s a coating of a chemical that almost certainly includes Zinc Sulphide. This has a very interesting property. When it is struck by an alpha particle it emits a brief flash of light, and this is what you see when you look through the eyepiece.


You have to use it in total darkness, and you need to allow at least five minutes to let your eyes adjust, but it’s worth the wait and you’ll see hundreds of flashes each minute as atoms disintegrate and smash into each other.


What Happened To It?

Spintariscopes have rather gone out of fashion thanks largely to misinformed attitudes towards radioactivity and the inevitable health and safety concerns. Nevertheless, at least one company in the US is still making them, but does not export them outside the US (even though you would need tens of thousands of them to make a small 'dirty' bomb).


This one isn’t that special, it turned up in a box of lab equipment bought at a boot sale a couple of years ago and the whole lot only cost me £5.00. However, good ones are most defintiely collector's items. Original ornate wood and brass Crookes ‘pattern’ Spinthariscopes, dating from the 1920s and 30s, are worth a small fortune and I have seen them selling on ebay to collectors for several hundred pounds.



First seen:                        1903

Original Price                   £?

Value Today?                   £25

Features:                          Eyepiece with magnifying lens, 0.02ug Radium source

Power req.                       n/a

Weight:                            0.18kg

Dimensions:                     68 x 60mm

Made in:                          England

Hen’s Teeth (10 rarest):    8

Kodak Pony 135 Model C, 1958

You may be wondering what this rather ordinary-looking 1950’s 35mm film camera is doing here. It is not an especially interesting or unusual design and there are no obvious features that warrant more than a passing mention. It wasn’t ahead of its time in any particular respect and as far as I am aware the pictures it took were not that different in quality to those shot on scores of similarly specified models from the same era, but there is one thing that sets it apart, certainly from most other still cameras, and that’s the lens. This camera is fitted with a 3-element Kodak Anaston lens with a focal length of 44mm; so far so ordinary, but the key point is that it is made using Thoriated glass, which means that it is mildly radioactive. In fact it is actually quite ‘lively’ and the alpha, beta and gamma radioactivity it emits is easily detected, even by modestly specified radiation monitoring instruments, but more on that in a moment.


Kodak’s Pony range was mainly aimed at amateur photographers; it’s an intermediate model, sitting between basic point and shoot cameras, like the classic Kodak ‘Brownies’, and more advanced and capable pro and semi-pro designs. The first Pony’s appeared in the late 1940s but this one, the Model C dates from the mid to late 50s. It’s a tough little camera, with a brown Bakelite body, good quality mechanics and optics. It uses 135 film cassettes, which was the Kodak designation for 35mm film; this is loaded into a compartment on the rear of the camera and manually threaded onto a take-up reel. The film is advanced, one frame at a time by turning the large knob on the right side of the top panel (looking at it from the rear), and when the roll has been exposed, it is wound back into the cartridge by the big knob on the left.


There are no fancy-schmancy meters or automatic controls, just a decent assortment of manual exposure options. The flash synchronised shutter is manually cocked and the speed can be adjusted between 1/25th and 1/300th of a second in 4 steps. There is also a ‘B’ or Bulb setting, where the shutter stays open for as long as the shutter button is pressed. (Bulb is a reference to the early days of photography when camera shutters were operated pneumatically, by pressing a rubber bulb). The iris or aperture range is from f/3.5 to f/22, in 7 steps, and to make things really easy it can be set by the numbers, or according to the conditions (Bright, Hazy, Cloudy, Cloudy-Bright), calibrated for Kodak’s black and white (Ektachrome) and colour (Kodachrome) films. The focussing ring on the front of the lens barrel is calibrated for distances of between 25 feet to infinity. The shutter’s manual cocking lever is on the side of the lens barrel and just below that there’s a bayonet connector for a flashgun.


Back now to that scary-sounding lens, and the reason it is radioactive is simple.  Mixing glass with the radioactive element Thorium (actually Thorium Oxide), up to 30 percent by weight, does several useful things, including increasing the glass’s refractive index. This means that lenses can be made thinner (which also helps reduces the cost). It also reduces chromatic aberrations in the glass, which causes objects to have coloured fringes, due to differences in the way glass focuses different colours. Over the years other radioactive elements have also been used in lenses, including Lanthanum, but it is not as cheap, effective (or radioactive).


In its pure state Thorium is only weakly radioactive and emits mostly Alpha particles, and on the scale of nastiness this is considered the least harmful type, outside of the body at any rate. Alpha radiation has very little penetrating power – particles can be stopped by a sheet of paper and do not pass through skin – so on the face of it, its inclusion in glass lenses doesn’t seem especially controversial. However, as Thorium decays it creates Beta and Gamma radiation (weirdly, the production of decay products means that the radioactivity increases over time, which is the opposite of what you would expect). Beta and Gamma has more penetrating power than Alpha radiation and it can cause problems, especially when there’s enough of it, in close proximity to living tissue. Fortunately the amounts of radioactivity given off by these and similar lenses is not generally regarded as hazardous, under normal circumstances and with normal use. However, radiation is tricky and highly contentious stuff so play safe and on no account put a bag full of Thorium-doped lenses in your trouser pockets…  Joking aside, if this is something you are concerned about the clever thing to do is read up on the subject, and if you want to check if the cameras in your collection, or plan on buying, have radioactive lenses do your homework – there is plenty of information online -- and it could be worth your while getting hold of a Geiger Counter (sorry for the shameless plug).


My little Pony came from ebay a good few years ago and as far as I recall it cost a couple of pounds. It is still in great condition and I have no doubts that it is still capable of taking photographs. I actually sought this model out, as a radioactive test source, after acquiring one of my first Geiger Counters. It proved to be very effective, though it needs to be in close physical contact with most instruments to get any sort of reading, and it doesn’t register anything when held a few centimetres away. 


What Happened To It?

Kodak’s Pony series ran from 1949 to around 1962 and throughout that period most models were fitted with either an Anaston or the higher quality 4-element Anastar lenses, and almost all of them used Thoriated glass. By the time it was being phased out Kodak had introduced the first of its pioneering Instamatic cameras, which at the time was arguably one of the biggest advances in photography for 50 years. Kodak obviously didn’t abandon the 35mm format but it gradually evolved into a serious amateur and semi pro format, with Instamatic and Instant cameras rapidly taking over the mass market. It is not known how many Pony cameras were made but you can take it as read that it was a heluva lot. They are really well made, and usually come with a protective leather case so there are still plenty of them around. They’re flea market and car boot sale regulars and because they look so ordinary, tend not to attract much attention and typically sell anywhere from 50 pence to £5.00, sometimes more if they’re in tip-top condition, boxed and come with instructions. Pony cameras are not yet serious collectibles but inevitably prices will only increase so now is as good a time as any to add one to your collection and whilst it is not much to look at, it does have an interesting story to tell. By the way, although there are no significant health hazards associated with this and other cameras with radioactive lenses if you have one then it is prudent not to let children play with it and it’s a good idea to store it safely, preferably in a metal box. 


First seen            1955

Original Price      £22 ($34)

Value Today        £10 (0315)

Features              35mm format, Thorium doped Kodak Anaston lens: 44mm, shutter: B, 1/25, 1/50, 1/100, 1/300th sec, aperture: f/3.5, 4, 5.6, 8, 11, 16, 22, presets Ektachrome/Kodachrome Bright/Hazy/Cloudy/Cloudy Bright, shutter sync, optical viewfinder, film advance interlock (to prevent double exposures)

Power req.                      n/a

Dimensions:                    140x 65 x 85mm

Weight:                            510g

Made (assembled) in:      Rochester, USA

Hen's Teeth (10 rarest):    5




All information on this  web  site  is provided as is without warranty of any kind. Neither dustygizmos.com nor its employees nor contributors are responsible for any loss, injury, or damage, direct or consequential, resulting from your choosing to use any of the information contained  herein.

Copyright (c) 2007 - 2017 dustygizmos.com